SANDIA REPORT

SAND97-1098 • UC-2020 Unlimited Release Printed April 1997

RECEIVED JUL 2 ⁹ 1997 OSTI

Analysis of the Technical Capabilities of DOE Sites for Disposal of Residuals from the Treatment of Mixed Low-Level Waste

SF2900Q(8-81)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd Springfield, VA 22161

NTIS price codes Printed copy: A06 Microfiche copy: A01

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. SAND97-1098 Unlimited Release Printed April 1997

Distribution Category UC-2020

Analysis of the Technical Capabilities of DOE Sites for Disposal of Residuals from the Treatment of Mixed Low-Level Waste

Prepared for the

Department of Energy (DOE) Office of Waste Management Federal Facility Compliance Act Disposal Workgroup

by

Robert D. Waters, Marilyn M. Gruebel, Brenda S. Langkopf, and Paul B. Kuehne Sandia National Laboratories P. O. Box 5800 Albuquerque, New Mexico 87185-0734

Abstract

The U.S. Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m^3 of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m³ of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

Members of the DOE Federal Facility Compliance Act Disposal Workgroup

Joel Case - Chairman Maurice Ades Larry Bustard Bill Gilbert Carol Irvine Jeff Kerridge Martin Letourneau Lance Mezga Colleen O'Laughlin Jim Orban Roger Piscitella Tim Sloan Joanne Steingard Linda Suttora Joe Waring DOE/Idaho Westinghouse Savannah River Company Sandia National Laboratories DOE/Oak Ridge DOE/Oakland DOE/Cocky Flats DOE/EM-35 Lockheed Martin Energy Systems/Oak Ridge DOE/Nevada DOE/Nevada DOE/Albuquerque Idaho National Engineering Laboratory Los Alamos National Laboratory BDM Federal DOE/EM-431 DOE/Richland

EXECUTIVE SUMMARY	vii
1. INTRODUCTION	1-1
1.1. BACKGROUND	1-1
1.2. PURPOSE OF THIS REPORT	1-2
1.3. QUALITY OF DATA	1-4
1.4 LIMITATIONS OF THE ANALYSIS	1 - 6
2. METHODOLOGY	2-1
2.1. SELECTION OF WASTE STREAMS FOR EVALUATION	2-1
2.1.1. Identify MLLW Streams Common to the MWIR and STP Databases	2-5
2.1.2. Categorize Waste Streams by Disposal Requirements	2-5
2.1.3. Review by DOE Sites	2-6
2.2. IDENTIFY TREATMENT PLANS FOR EACH WASTE STREAM	2-6
2.2.1. Relate Waste Streams to Process Flows	2-6
2.2.2. Match Process Flows to Volume Change Factors	2-7
2.3. ESTIMATE VOLUMES OF TREATED MLLW FOR DISPOSAL	2-7
2.3.1. Sort Waste Streams by Disposal Type	2-9
2.3.2. Review by DOE Sites	2-9
2.4. EVALUATE RADIONUCLIDE CONCENTRATIONS IN TREATED WASTE	2-9
2.4.1. Estimate Radionuclide Concentrations in Residual MLL w	2-9
2.4.2. Compare Radionuclide Concentrations in Residual MLLW with Concentration Estimates	~ • • •
	2-11
2.1 VOLUMES OF WASTE FOR DISDOGAL	··· J-I
2.1.1. Complex Wide Volumes of Waste for Disposel	3-1
2.1.2. Complex Wide Volumes of Peridual MI J W Planned for Commercial Disposal	
3.1.2. Complex- wide Volumes of Residual WELW Flamed for Commercial Disposal	3.5
3.2 EVALUATION OF RADIONLICI IDE CONCENTRATIONS IN RESIDUAL MILLW	3-5
3.2.1 Waste Volumes Included in the Analysis of Radionuclide Concentrations	3-8
3.2.2.1. Waster Volumes included in the Analysis of Radional and Concentrations in Residual MLLW to the PF-Derived Limits	3_0
3 2 3 Estimated Total Inventory of Radionuclides in Residual MLLW	3-16
3.2.5. Estimated Form for Disposal	3-17
4 DISCUSSION	
4.1. ASSUMPTIONS AND UNCERTAINTIES	4-1
4.1.1. Volumes of Waste for Disposal	4-1
4.1.2. Concentrations of Radionuclides	4-2
4.2. ANALYSIS RESULTS IN PERSPECTIVE	4-4
4.2.1. Volumes of Waste for Disposal	4-4
4.2.2. Concentrations of Radionuclides	4-5
5. CONCLUSIONS AND RECOMMENDATIONS	5-1
5.1. CONCLUSIONS	5-1
5.2. RECOMMENDATIONS	5-2
6. REFERENCES	6-1
Appendix A - Site Contacts	. A-1
Appendix B - Permissible Radionuclide Concentrations for the Polyethelene Microencapsulation,	
Polyethelene Macroencapsulation, and Glass Waste Forms Based on the PE Methodology	. B-1
Appendix C - Summary of Data Used in the Calculation of Treated Volumes of MLLW	. C-1
Appendix D - Summary of Comparisons of Waste Stream Concentrations with Results of the	
Performance Evaluation	. D-1

CONTENTS

Figures

.

Figure 1.	Disposition of waste volumes in the analysis of the technical capabilities of DOE sites	
-	for disposal of radionuclides in treated residuals of mixed low-level waste	ix
Figure 1-1.	Sites considered in the performance evaluation for disposal of MLLW	. 1-2
Figure 1-2.	Disposition of waste volumes in the analysis of the technical capabilities of DOE sites	
-	for disposal of the radionuclides in treated residuals of mixed low-level waste.	1-3
Figure 2-1.	Flow diagram for analysis of MLLW.	.2-2
Figure 2-2.	Flow diagram for analysis of radionuclide concentrations in residual MLLW	. 2-3
Figure 3-1.	Categorization of the initial total volume of MLLW.	. 3-2
Figure 3-2.	Planned disposal of residual MLLW	. 3-4
Figure 3-3.	Volumes of residual MLLW by site	. 3-6
Figure 3-4.	Volumes of LLW by site.	. 3-7
Figure 3-5.	Volumes of TRU waste by site.	3-8
Figure 3-6.	Residual MLLW volume and waste streams included in the analysis of radionuclide concentrations.	3-9
Figure 3-7.	Estimate of volumes associated with various waste forms for DOE residual MLLW,	
0	based on a volume of 62,230 m ³	3-18

<u>Tables</u>

Table 1.	Sites Considered in the Residuals Analysis Project and the Associated Volumes That Are	
	Expected To Be Disposed of as MLLW After Treatment	viii
Table 2-1.	Sites Considered in the Residuals Analysis Project	2-4
Table 2-2.	Volumes of MLLW Associated with the MWIR and STP Databases	2-5
Table 2-3.	Activity Per Unit Mass Ratio (AMR) for Selected Waste Types	2-8
Table 2-4.	Assumed Distributions for Mixed Fission Products (MFP), Mixed Activity Products	
	(MAP), Depleted Uranium (DU), and Natural Uranium	2-11
Table 2-5.	Categories for Comparison of Radionuclide Concentrations in Residual MLLW	
	with the PE Limits.	2-12
Table 3-1.	Waste Types and Projected Treatment of Residual MLLW	3-3
Table 3-2.	Hypothetical Comparison of Waste Streams and Sites with Site-Specific PE Results	3-11
Table 3-3.	Volume Percentage (%) of Residual MLLW by Category for Each of the 15 DOE Sites	
	Evaluated for Disposal.	3-12
Table 3-4.	Summary of Best Technical Combinations of Waste and Disposal Sites for Residual MLLW,	
	Based on Radionuclide Content	3-14
Table 3-5.	Volume Percentages of Potentially Problematic MLLW Associated with Their Associated	
	Controlling Radionuclides	3-16
Table 3-6.	Estimate of Inventory of Radionuclides in DOE Residual MLLW	3-17

.

v

Nomenclature

.

AMR	activity per unit mass ratio
D&D	decontamination and decommissioning
DOE	Department of Energy
DU	depleted uranium
DWG	Disposal Workgroup
FFCAct	Federal Facility Compliance Act
LDR	land disposal restrictions
LLW	low-level waste
MAP	mixed activity products
MFP	mixed fission products
MLLW	mixed low-level waste
MWFA	Mixed Waste Focus Area
MWIR	Mixed Waste Inventory Report
MPC	matrix parameter categories
PA	performance assessment
PATT	Performance Assessment Task Team
PE	performance evaluation
RCRA	Resource Conservation and Recovery Act
SOF	sum of fractions
STP	site treatment plan
TRU	transuranic
WAC	waste acceptance criteria
WIPP	Waste Isolation Pilot Plant

EXECUTIVE SUMMARY

The Federal Facility Compliance Act (FFCAct) of 1992 requires the U.S. Department of Energy (DOE) to work with its regulators and with members of the public to establish plans for the treatment of DOE's mixed low level waste (MLLW). Although the FFCAct does not specifically address disposal of treated MLLW, both DOE and the affected States recognize that disposal issues are an integral part of treatment discussions. The DOE established the FFCAct Disposal Workgroup to work with the States in identifying, from among the sites currently storing or expected to generate MLLW, those that might be suitable for the disposal of MLLW. The technical capabilities of the fifteen sites selected through this process were quantified and qualified in a recently completed performance evaluation (PE) project.

An additional task, which is the subject of this report, was to estimate volumes and radionuclide concentrations of treated MLLW considered under the FFCAct based on DOE's current and five-year projected inventory. The sites that were considered in this analysis and the associated volumes that are expected to be disposed of as MLLW after treatment, based on the results of this analysis, are shown in Table 1. Relevant data from both DOE's 1995 Mixed Waste Inventory Report (MWIR) and site treatment plans updated to reflect status as of mid-1996 were used in the calculations. The estimates were used, along with the results of the PE project, to analyze the technical capabilities of the fifteen identified sites for disposal of these treated wastes and to identify areas for further research and data collection. The general disposition of the MLLW as a result of this scoping-level analysis is shown in Figure 1.

The estimation of volumes of residual MLLW and the comparison of concentrations of radionuclides in residual MLLW with the limits estimated by the PE project were scoping-level analyses for two primary reasons. First, the method used to estimate residual MLLW volumes and radionuclide concentrations was a simplified approach to quantifying the effects of treatment processes. Second, the concentration limits estimated by the PE project were determined by using a set of modeling assumptions that included sufficient detail to capture major site-specific characteristics but were general enough for consistent application at all sites. Thus, the analysis described in this report was a scoping-level analysis to identify the residual MLLW for which disposal considerations should be given closer attention. The following conclusions and recommendations were derived from this analysis:

• Of the approximately 130,000 m³ of MLLW considered under the FFCAct that is either currently stored or projected to be generated within the next five years and is designated for treatment, approximately 89,000 m³ will require disposal as MLLW (the residual MLLW), an additional 6000 m³ will require disposal as low-level waste, and 5000 m³ will require disposal as transuranic waste. The net volume reduction due to treatment of this waste is approximately 21,000 m³. The remaining 9000 m³ of this waste was insufficiently characterized to be assigned a preferred alternative for treatment; 6000 m³ of this waste was projected waste. Of the 89,000 m³ of residual MLLW, approximately 49,000 m³ is currently planned for disposal at commercial facilities; therefore, up to 40,000 m³ of residual MLLW will require disposal at one or more DOE facilities or at a commercial site. The disposition of waste volumes is illustrated in the left-hand portion of Figure 1.

vii

Table 1. Sites Considered in the Residuals Analysis Project and the Associated Volumes That AreExpected To Be Disposed of as MLLW After Treatment (sites shown in italics wereevaluated for their disposal capabilities in the performance evaluation project [DOE, 1996]).

State	Site	Volume of Residual MLLW (m ³)
California	Energy Technology Engineering Center (ETEC)	<1
	General Atomics	a
	Former Laboratory for Energy-Related Health Research	^a
	Lawrence Berkeley National Laboratory (LBL)	<1
	Mare Island Naval Shipyard (Mare Island NSY)	20
	Lawrence Livermore National Laboratory (LLNL)	970
Colorado	Rocky Flats Environmental Technology Site (RFETS)	26,000
Connecticut	Knolls Atomic Power Laboratory - Windsor (KAPL-W)	10
Hawaii	Pearl Harbor Naval Shipyard (Pearl Harbor NSY)	<1
Idaho	Idaho National Engineering Laboratory (INEL) (including Argonne National Laboratory - West [ANL-W])	60
Illinois	Argonne National Laboratory - East (ANL-E)	170
lowa	Ames Laboratory	^a
Kentucky	Paducah Gaseous Diffusion Plant (PGDP)	20
Maine	Portsmouth Naval Shipyard (Portsmouth NSY)	2
Missouri	Weldon Springs Remedial Action Project	— ^b
	Missouri University Research Reactor (MURR)	<1
Nevada	Nevada Test Site (NTS)	<1
New Mexico	Los Alamos National Laboratory (LANL)	130
	Sandia National Laboratories (SNL)	120
New York	Knolls Atomic Power Laboratory - Kesselring (KAPL-K)	10
	Knolls Atomic Power Laboratory - Niskayuna (KAPL-N)	30
	Brookhaven National Laboratory (BNL)	<1
	West Valley Demonstration Project (WVDP)	<1
Ohio	Battelle Columbus Laboratories Decommissioning Project (Battelle)	<1
	Fernald Environmental Management Project (FEMP)	350
	Mound Plant (Mound)	2
	Portsmouth Gaseous Diffusion Plant (PORTS)	2,700
	RMI Titanium Company (RMI)	4
Pennsylvania	Bettis Atomic Power Laboratory (Bettis)	2
South Carolina	Savannah River Site (SRS)	410
Tennessee	Oak Ridge Reservation (ORR) (including K-25 Site, Oak Ridge National Laboratory [ORNL], Y-12 Plant)	49,000
Texas	Pantex Plant (Pantex)	130
Virginia	Norfolk Naval Shipyard (Norfolk NSY)	2
Washington	Puget Sound Naval Shipyard (Puget Sound NSY)	4
-	Hanford Reservation (Hanford)	9,000

a Not included in analysis because of insufficient data

b Planned on-site disposal of MLLW in Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cell

Figure 1. Disposition of waste volumes in the analysis of the technical capabilities of DOE sites for disposal of the radionuclides in treated residuals of mixed low-level waste (underlined words in this figure were used in this report to represent a particular category of MLLW)

X.

As indicated in the PE project report, all 15 sites evaluated in this project have the technical capability to dispose of some residual MLLW, and sites located in the arid region of the country tend to have higher permissible limits on radionuclide concentrations in waste than sites in the humid region of the country. Comparing the limits estimated in the PE with estimates of radionuclide concentrations in residual MLLW indicates that up to 90% of the evaluated residual MLLW could be disposed of at several arid sites with little additional analysis; about 50% of this waste could be disposed of at several humid sites. More detailed analyses would likely increase both of these percentages. Also, more site-specific design of the disposal facilities could increase the percentages.

Based on the volume estimates calculated in this analysis, enough capacity currently exists in commercial sites and at Hanford and Nevada Test Site for disposal of all of DOE's residual MLLW. Additional disposal capacity may be required for MLLW generated by processes not managed under FFCAct agreements (e.g., wastes generated from future decontamination and decommissioning [D&D] and environmental restoration activities). This conclusion is based on the technical aspects of disposal only—ethical, social, economic, and policy considerations relevant to waste disposal were not considered in the analysis.

- The results of this scoping-level analysis indicate that waste streams associated with about 90% of the total residual MLLW volume evaluated in the concentration analysis are likely to present no significant technical issues for MLLW disposal and require little additional analysis. The remaining residual MLLW streams that were identified as potentially problematic require further evaluation of their treatment, disposal plans, and facility designs. Almost all of these potentially problematic waste streams are listed as such because disposal concentrations are limited by the assumed intrusion scenarios in the PE report; the effect of intrusion can be mitigated to some extent by burying the waste deeper.
- Additional waste characterization data should be collected. Of the total current and five-year projected volume of MLLW that has been reported, about 7% (9000 m³) is attributed to waste streams that do not have enough characterization and treatment information to be included in the calculation of post-treatment volumes. Of the residual MLLW volume that was calculated in the analysis, about 30% (27,000 m³) is attributed to waste streams that could not be included in the comparison of radionuclide concentrations with the limits estimated by the PE project due to lack of radiological characterization data. The data on these latter waste streams either did not include a listing of radionuclides or did not provide concentrations for any of the listed radionuclides. In addition, of the residual MLLW streams that were included in the comparison, many did not have concentrations for all of the listed radionuclides.
- Future studies should focus on the potentially problematic waste streams identified in this analysis. These waste streams should be re-evaluated with regard to
 - \Rightarrow site-specific waste acceptance criteria and performance assessments,
 - \Rightarrow alternative treatment processes,
 - \Rightarrow alternative waste forms, and
 - \Rightarrow different regulatory requirements (i.e., those that may change with the reissuance of DOE Order 5820).

1. INTRODUCTION

The Federal Facility Compliance Act (FFCAct) of 1992 (FFCAct, 1992) requires the U.S. Department of Energy (DOE) to work with its state and federal regulators and with members of the public to establish plans for the treatment of DOE's mixed low-level waste (MLLW). Along with other radioactive and hazardous waste, wastes that are now considered MLLW have been generated for more than 50 years through DOE activities related to the production of materials for nuclear weapons and research with nuclear materials; however, the regulatory recognition of MLLW originated in the Resource Conservation and Recovery Act (RCRA) of 1976 (RCRA, 1976). Although the FFCAct does not specifically address disposal of MLLW that remains after treatment (i.e., residual MLLW), both DOE and the States recognize that disposal issues are an integral part of treatment discussions.

The DOE established the FFCAct Disposal Workgroup (DWG) in June 1993 to work with the States in defining and developing a process for evaluating disposal options for treated MLLW. The focus of the DWG process and of discussions on disposal with the States has been to identify, from among the sites currently storing or expected to generate MLLW, those that are suitable for further evaluation in terms of their disposal capabilities. An additional task, which is the subject of this report, was to provide an estimate of the volumes of residual MLLW to be disposed of and the technical capabilities of the identified sites to dispose of DOE residual MLLW.

1.1 BACKGROUND

The DOE currently generates, stores, or expects to generate (over the next five years) about 130,000 m³ of MLLW managed under FFCAct agreements at 39 sites in 19 states. Because MLLW has a hazardous component, it must usually be treated to comply with the land disposal restrictions (LDRs) of RCRA. However, there is insufficient capacity, and in some cases a lack of available technologies, to treat all of this waste. The FFCAct required the Secretary of Energy to develop and submit site treatment plans (STPs) for the development of treatment capacity for treating mixed waste for each facility where the DOE stores or generates this waste, unless otherwise required by the statute. These plans identify how the DOE will provide necessary treatment capacity for MLLW, including schedules for bringing new treatment facilities into operation. In collaboration with the States and the National Governors' Association, the DOE has developed the required treatment plans at 35 DOE sites. At most sites, these STPs have since resulted in consent orders with the appropriate state or federal regulating agency. Because it already had a Tri-Party agreement that addressed these issues, the Hanford Site is not required to produce a STP.

A three-volume report prepared by the DWG describes a performance evaluation that quantified and compared the potential capabilities of 15 DOE sites for disposal of stabilized residuals resulting from the treatment of MLLW (DOE, 1996). That report discusses the methodology, describes the evaluated sites, and provides estimates of permissible concentrations of radionuclides in residual MLLW for disposal at each site. The 15 sites considered in the performance evaluation (Figure 1-1) were selected from an initial universe of 49 DOE sites that

either currently stored or were expected to generate MLLW over the next five years^{*}. Details about the screening analyses are provided in the performance evaluation report (DOE, 1996, Vol. 2, Chpt. 2).

Figure 1-1. Sites considered in the performance evaluation for disposal of MLLW.

1.2 PURPOSE OF THIS REPORT

The performance evaluation provided scoping-level estimates of permissible concentrations of radionuclides in DOE residual MLLW that technically could be disposed of at 15 DOE sites. The analysis documented in this report used reported inventories of DOE MLLW to

- estimate the volume of treated MLLW to be disposed of as residual MLLW, as low-level waste (LLW), and as transuranic waste (TRU) (see Figure 1-2);
- estimate the capabilities of the 15 sites for disposal of DOE residual MLLW by comparing reported radionuclide concentrations in residual MLLW streams with the estimated permissible concentrations reported in the performance evaluation;

Information compiled since 1993 indicates that the DOE currently generates, stores, or expects to generate (over the next five years) MLLW at 39 sites (DOE, 1996).

Figure 1-2. Disposition of waste volumes in the analysis of the technical capabilities of DOE sites for disposal of the radionuclides in the treated residuals of mixed low-level waste (bold underlined words in the figure were used in this report to represent a particular category of MLLW).

1-3

- identify potentially problematic combinations of residual MLLW streams and treatment plans with respect to disposal of the final waste form at some sites (thus allowing feedback to treatment and disposal planning); and
- identify areas for further data collection and treatment research.

Only the technical aspects of waste treatment and disposal were considered in this report; other considerations, including social, ethical, political, economic, and policy aspects of disposal, were not considered.

1.3 QUALITY OF DATA

The analyses described in this report were based on characterization data collected by the DOE in 1995 for its Mixed Waste Inventory Report (MWIR) (INEL, 1995) and on site-specific treatment plans compiled into a site treatment plan (STP) database. The MWIR report contains characterization data for MLLW streams managed under agreements resulting from implementation of the FFCAct. Other activities may also generate MLLW, including environmental restoration and decontamination and decommissioning.

The quality of the data used in this analysis is a function of the quality of both the initial input data from the MWIR and STP databases and the efforts used in this analysis to process the data.

Data collection for the 1995 version of the MWIR was conducted for DOE by the National Low-Level Waste Management Technical Support Program (TSP) located at INEL. Two uncontrollable factors that affect data quality were recognized by the TSP staff:

- 1. The sites differ significantly in the type of data, level of confidence, and resources to collect and provide data.
- 2. The quality of the data collected is a function of the time and efforts at the site.

With these factors in mind, a data quality program for the MWIR database was developed by the TSP staff. This program was comprised of eight areas:

- 1. Well-defined requirements based on site and end-user input were created, detailed instructions for the data collection questionnaire were created, and format and abbreviations were standardized.
- 2. Where possible, the system to collect the data was designed to limit the responses to standardized pick-lists, which minimizes cases of invalid or inappropriate data in the fields. However, sites that electronically downloaded data into the form were able to defeat some of these features.
- 3. Before the data call, a training session was held with site contacts to review the questionnaire and instructions.

- 4. On-site and telephone technical assistance was provided to a number of sites. In many cases, site resources were supplemented by TSP staff.
- 5. Each data version received from the sites was cataloged and tracked to ensure that the most recent data were being used. Electronic data received from the sites were electronically checked to verify absence of corruption due to importation.
- 6. Electronic and manual quality assurance (QA) of each waste stream and treatment system was completed. The purpose of the QA was to verify that the sites responded appropriately to each query. Each stream was reviewed for internal inconsistencies.
- 7. The TSP staff reviewed data and faxed questions to site contacts for resolutions. All questions and responses were marked on a hard copy version of the waste stream and retained in the master files.
- 8. Final site review and approval was obtained after comment resolutions were incorporated into the site data.

The development of the STP database consisted of electronically incorporating data contained in site-specific treatment plans, and QA efforts were directed at ensuring that the data were incorporated correctly (e.g., review of input data). Little formal interaction with the site contacts was conducted.

The QA efforts for the evaluation summarized in this report involved review of input data and results of analyses by site contacts and assurance that the electronic database and calculations were error free. As discussed in Chapter 2 of this report, the input data and results of the calculations were reviewed by the site contacts (see Appendix A) on two separate occasions. Comments received during these reviews and resolution of these comments were entered into a QA catalog for the project. For each waste stream considered in the analysis, this QA catalog contains a record of all comments from the site and disposition of the comment by the project staff. In addition, it contains the basis for inclusion or exclusion of the waste stream for different parts of the evaluation described in this report.

Assurance that the electronic database and calculations used in the project were error free was provided by peer review of the calculations by technical staff at Sandia National Laboratories. When required data were missing or not available for a waste stream, that waste stream was identified as lacking data and not analyzed.

While the input data sets used in this analysis contain many gaps and uncertainties, the MWIR and STP databases represent the best available, centralized source of data for DOE MLLW. Used with circumspection and caution, these data appear to be adequate for use in a scoping-level analysis.

1.4 LIMITATIONS OF THE ANALYSIS

The estimation of volumes of residual MLLW and the comparison of concentrations of radionuclides in residual MLLW with the limits estimated by the PE project were scoping-level analyses for two primary reasons. First, the method used to estimate volumes and radionuclide concentrations in residual MLLW streams was a simplified approach to quantifying the effects of treatment processes: estimates were made of initial and after-treatment bulk densities of the waste and of the volume changes that would occur in using the preferred treatment processes. Second, the concentration limits estimated by the PE project were determined by using a set of modeling assumptions that included sufficient detail to capture major site-specific characteristics but were general enough for consistent application at all sites. Thus, the analysis described in this report was a scoping-level analysis to identify those residual MLLW streams for which disposal considerations should be given closer attention. Detailed analyses of the effects of treatment may provide different results than those presented here.

Prior to operating a disposal facility for MLLW, DOE must develop site-specific performance assessments and other performance analyses to ensure that prescribed dose objectives contained in DOE Order 5820.2A (DOE, 1988) will be achieved; these analyses result in the radiological component of a site-specific WAC. These WAC are used to determine acceptability of specific waste streams for disposal at a particular facility. DOE Order 5820.2A, which governs disposal of these wastes, is currently being revised. One of the revisions is expected to be related to evaluation of the consequences of inadvertent intrusion. Because most of the limiting concentrations for radionuclides used in the PE were based on consideration of intrusion, changes to the approach for evaluating these scenarios may substantially affect the results of the PE and, therefore, this analysis.

Residual MLLW streams identified in this analysis as being potentially problematic should not be considered as wastes that cannot be disposed of at any of the 15 sites evaluated in the PE project; instead, they should be viewed as wastes that need more careful scrutiny. Almost all of these potentially problematic waste streams are listed as such because disposal concentrations are limited by the assumed intrusion scenarios in the PE report; the effect of intrusion can be mitigated to some extent (e.g., by burying the waste deeper). Conversely, all other waste streams evaluated in this analysis are likely to present no significant technical issues for disposal. In this sense, the scoping-level nature serves to eliminate from further analysis waste streams that appear to present no significant issues for disposal and to focus attention on the wastes that require more analysis.

An additional "potentially problematic waste streams" report is currently being developed (Waters et al., draft of 4/24/97) that will provide the results of a more refined analysis of the disposability of the residuals from treatment of MLLW than those provided by this report. Specific waste streams requiring additional evaluation and research will be identified. By identifying the waste streams that may still pose problems for disposal, research and development can be funded in the needed areas. The final "potentially problematic waste streams" report will provide input to documents prepared by DOE's Mixed Waste Focus Area for DOE's Environmental Management customers, including Waste Management (EM-30), Environmental Restoration (EM-40), and Facility Transition (EM-60) divisions.

2. METHODOLOGY

The DOE has been collecting characterization information for its MLLW for over three years and has developed STPs for the MLLW streams at each of its sites that stores or may generate this waste. In this report, disposal considerations related to the currently available STPs are presented. One of the primary disposal considerations addressed in this project was an estimate of the volume of residual MLLW for disposal. This information will aid in DOE's determination of the size and number of disposal facilities that will be required to manage DOE LLW. Another disposal consideration addressed in this project was an estimate of concentrations of radionuclides in the residual MLLW. By comparing these concentrations with the limiting concentrations of radionuclides in waste developed in the performance evaluation (PE) report (DOE, 1996), information was provided about the acceptability of residual MLLW for disposal and about waste streams that require further evaluation.

The general methodology for the project is shown by the flow diagrams in Figures 2-1 and 2-2. As indicated in the blocks of each flow diagram, the steps of the methodology are discussed in the identified sections of this chapter.

2.1 SELECTION OF WASTE STREAMS FOR EVALUATION

Mixed low-level waste streams have been identified by DOE sites for inclusion in sitespecific treatment plans. Characterization data for these waste streams are stored in the database for the MWIR, which was last updated in June 1995. Each site with MLLW streams continually updates its own characterization data related to the waste streams; the incorporation of these changes is discussed later in this section.

The plans for treating each waste stream are contained in the STP for each site. These plans provide the basis for the consent orders between the sites and their regulating agencies. The details of the STPs are contained in database format. More recent estimates of waste stream volumes than those in the MWIR database are also contained in the STP database. The MWIR and STP databases are largely consistent but not completely so because of the dynamic nature of the development of characterization data and subsequent identification of waste streams that contain MLLW at each site.

The waste streams for all sites that have both MWIR data and an STP were included in this analysis. In addition, although the Hanford Site was not required to develop an STP because it has a Tri-Party Agreement (FFCAct $\S102$ (c)(5), 1992), the waste streams at this site were also included in the analysis. The sites considered in this analysis are listed in Table 2-1.

2-1

Figure 2-1. Flow diagram for analysis of MLLW.

Figure 2-2. Flow diagram for analysis of radionuclide concentrations in residual MLLW.

Table 2-1. Sites Considered in the Residuals Analysis Project (sites shown in italics were evaluated for their disposal capabilities in the performance evaluation project [DOE, 1996]).

State	Site
California	Energy Technology Engineering Center (ETEC)
	General Atomics
	Former Laboratory for Energy-Related Health Research
	Lawrence Berkeley National Laboratory (LBL)
	Mare Island Naval Shipyard (Mare Island NSY)
	Lawrence Livermore National Laboratory (LLNL)
Colorado	Rocky Flats Environmental Technology Site (RFETS)
Connecticut	Knolls Atomic Power Laboratory - Windsor (KAPL-W)
Hawaii	Pearl Harbor Naval Shipyard (Pearl Harbor NSY)
Idaho	Idaho National Engineering Laboratory (INEL) (including Argonne National Laboratory - West [ANL-W])
Illinois	Argonne National Laboratory - East (ANL-E)
lowa	Ames Laboratory
Kentucky	Paducah Gaseous Diffusion Plant (PGDP)
Maine	Portsmouth Naval Shipyard (Portsmouth NSY)
Missouri	Weldon Springs Remedial Action Project
	Missouri University Research Reactor (MURR)
Nevada	Nevada Test Site (NTS)
New Mexico	Los Alamos National Laboratory (LANL)
	Sandia National Laboratories (SNL)
New York	Knolls Atomic Power Laboratory - Kesselring (KAPL-K)
	Knolls Atomic Power Laboratory - Niskayuna (KAPL-N)
	Brookhaven National Laboratory (BNL)
	West Valley Demonstration Project (WVDP)
Ohio	Battelle Columbus Laboratories Decommissioning Project (Battelle)
	Fernald Environmental Management Project (FEMP)
	Mound Plant (Mound)
	Portsmouth Gaseous Diffusion Plant (PORTS)
	RMI Titanium Company (RMI)
Pennsylvania	Bettis Atomic Power Laboratory (Bettis)
South Carolina	Savannah River Site (SRS)
	Charleston Naval Shipyard (Charleston NSY)
Tennessee	Oak Ridge Reservation (ORR) (including K-25 Site, Oak Ridge National Laboratory [ORNL], Y-12 Plant)
Texas	Pantex Plant (Pantex)
Virginia	Norfolk Naval Shipyard (Norfolk NSY)
Washington	Puget Sound Naval Shipyard (Puget Sound NSY)
_	Hanford Reservation (Hanford)

2.1.1 Identify MLLW Streams Common to the MWIR and STP Databases

The waste streams initially identified for evaluation in this project were the 1689 streams that were contained in both the MWIR and STP databases. The preliminary volumes for the waste streams were those associated with the MWIR database, with site-specific updates provided during site reviews. A comparison of the total waste stream volumes for the two databases (Table 2-2) shows that the two estimates of volumes are within 1.5%. Differences in the volumes assigned to the waste streams in the two databases are due to revised estimates at the time of the database calls, newly generated waste associated with a stream, the combination of previously distinct waste streams, or treatment of waste associated with a stream.

	MWIR Database		STP Database	
Waste Streams	(# of streams) (m ³) (# of streams)		(# of streams)	(m ³)
in MWIR and STP	1689	113,300	1689	115,024
in MWIR and not STP	193	373	-	-
in STP and not MWIR	-	-	174	467

Table 2-2. Volumes of MLLW Associated with the MWIR and STP Databases

Some waste streams were reported in the MWIR and not reported in the STP for a number of reasons: treatment was not required for the waste stream; the waste stream was not subject to the FFCAct process; or the waste stream was redistributed to other existing or new streams. Some streams were reported in the STP and not reported in the MWIR: they were either newly generated waste streams or redefined MWIR waste streams resulting in new waste streams.

2.1.2 Categorize Waste Streams by Disposal Requirements

The 1689 MLLW streams in both MWIR and STP databases were sorted depending on whether the RCRA hazardous constituents they contain are defined as characteristic or listed hazardous wastes. In general, a waste containing a hazardous characteristic is required by RCRA to be treated to remove the characteristic. These wastes may then be disposed of in RCRA non-Subtitle C disposal facilities. In this report, MLLW that contains only characteristic wastes and is treated to meet the LDRs of RCRA was assumed to be disposed of as LLW; MLLW disposal capacity is not required for these wastes.

Due to the "derived from" requirements of RCRA (40 CFR Part 261.3 (c)(2)), waste streams categorized in RCRA as listed hazardous wastes will remain MLLW even after treatment to remove the listed constituent. These wastes will be disposed of in Subtitle C disposal facilities, and MLLW disposal capacity was assumed to be required for these wastes. Treated wastes containing combinations of listed and characteristic hazardous constituents were assumed to be disposed of in facilities for MLLW due to the presence of the listed wastes. In addition, MLLW debris containing listed or characteristic wastes that are treated under the debris rule using waste stabilization methods must still be disposed of in a Subtitle C disposal facility; MLLW disposal capacity was assumed to be required for these wastes.

Many states have been delegated authority for regulation of RCRA, and some states have developed additional requirements that are different than those contained in the Code of Federal Regulations. While these state regulations will apply to certain of the waste streams considered in this evaluation, only the federal regulations were used in this evaluation for several reasons: (1) the locations for treatment and disposal of waste streams are often not known, so that the specific state regulations cannot be selected and (2) the compilation, incorporation, and evaluation of the most recent changes to state regulations is beyond the scope of this analysis.

2.1.3 Review by DOE Sites

Summaries of the characteristics of waste streams common to both the MWIR and STP databases and sorted by anticipated disposal as MLLW or LLW were reviewed by each site. These reviews were used to update waste volumes, radionuclide concentrations, and classifications of hazardous constituents; to add new waste streams; and to delete waste streams that were no longer considered MLLW or which had already been treated and disposed of. In addition, the type of disposal required for each of the waste streams was reviewed and modified by the sites.

The review served as a site-specific quality check for the waste stream data used in the analysis. The site contacts listed in the MWIR database were the primary site contacts for this review.

2.2 IDENTIFY TREATMENT PLANS FOR EACH WASTE STREAM

The DOE sites have identified their preferred treatment alternatives for each of the MLLW streams, and these plans are contained in the STP database. These treatment processes, represented by process flow diagrams, were used as the basis for determining the effects of treatment on the volume of waste and on the concentrations of radionuclides in treated waste. While most of the sites identified existing treatment facilities for many of their waste streams, some sites either identified new, unbuilt treatment facilities or described the preferred treatment process for some of their wastes in general terms. For these latter two cases, either (1) assumptions were made to arrive at a process flow diagram or (2) the waste streams were identified as not having enough information to make reasonable assumptions.

2.2.1 Relate Waste Streams to Process Flows

For the waste streams that were clearly associated with a known treatment process, the characteristics of that treatment process were used to estimate the changes in waste volumes and radionuclide concentrations in waste. For waste streams with an associated treatment process that was less specific, assumptions about the treatment processes made by the DOE Mixed Waste Focus Area (MWFA) were used.

The MWFA has been evaluating combinations of waste streams and treatment processes using an approach similar to that explained here to help them prioritize their technology development needs by identifying the current technology barriers to treatment of MLLW. In the course of their work, the MWFA made assumptions about the treatment processes associated with the waste streams based both on the MWIR and STP data and on interaction and review by the DOE sites (MWFA, 1996). In this project, the process flow diagrams identified by the MWFA were used as the basis for estimating the changes in waste volumes and radionuclide concentrations in waste for waste streams with poorly defined plans for treatment.

Some waste streams in the MWIR and STP databases had no associated information about the preferred treatment process. These streams were either poorly characterized or had unique characteristics that made identifying a preferred treatment process difficult. These streams were identified in this project as having no known treatment process, and they were not analyzed further. Additional site-specific decisions for type of treatment will be required before plans for disposal can be determined.

2.2.2 Match Process Flows to Volume Change Factors

Given the waste characteristics and the assumptions about the treatment processes for each waste stream, estimates were made for the changes in volumes of waste due to treatment. The volume of waste after treatment, V_F , was estimated using Equation 1 and assumptions based on work done at the Savannah River Site (SRS) (WSRC, 1995), which are summarized in Table 2-3.

$$V_F = (V_{Cl} + V_P) \times AMR \times \frac{\rho_{b-initial}}{\rho_{b-final}}$$

where

 V_{Cl} is the current inventory for the waste stream (m³);

 V_P is the 5-year projected inventory for the waste stream (m³);

AMR is the activity-per-unit-mass ratio (the ratio of the activity per unit mass before treatment to the activity per unit mass after treatment), given in Table 2-3 (dimensionless);

 $\rho_{b\text{-initial}}$ is the initial bulk density of the waste (g/cm³); and $\rho_{b\text{-final}}$ is the final bulk density of the treated waste (g/cm³).

The preliminary estimates for $\rho_{b\text{-initial}}$ for the waste streams were based on the matrix parameter categories (MPC) associated with each waste stream in the MWIR database. The definitions for the MPC are contained in Kirkpatrick (1995). The sites reviewed and updated the estimates for all parameter values, including AMR, for each of the waste streams. The ranges of AMRs selected by the sites are shown in the last column in Table 2-3.

2.3 ESTIMATE VOLUMES OF TREATED MLLW FOR DISPOSAL

An estimate of the volume of treated MLLW was made for each waste stream using Equation 1 and the preliminary estimates for parameter values.

(1)

Waste Type	Treatment Process	$ \begin{array}{c} \text{AMR} \\ (A_1/m_1)/(A_2/m_2)^a \end{array} $	Range or Value Used by Sites	
Wastewater	Thermal	0.01	0.01 - 0.1	
	Non-Thermal	0.25	0.001 - 0.25	
	Direct Stabilization	2	0.2	
Combustible Organics	Thermal	<0.01	0.01 - 2	
	Non-Thermal	2	0.01 - 2	
Inorganic Homogeneous	Thermal	2	0.01 - 2	
Soils and Solids	Thermal Desorption	2	1-2	
	Non-Thermal	2	1 - 2	
	Non-Thermal Extraction Oxidation	2	2	
Debris	Thermal	0.05	0.01 - 2	
	Non-Thermal	2	2	
	Stabilization	2	1 - 2	
	Thermal Desorption	2	- ^b	
Lab Packs	Thermal Oxidation	0.05	0.01 - 1	
	Chemical Oxidation	2	2 - 100	
	Chemical Precipitation	Variable	b	
Elemental Mercury	Amalgamation	10-20	2 - 15	
Hazardous Metals (Pb, Cd, Be)	Surface Decontamination	0.05	0.05 - 0.5	
Batteries	Surface Decontamination Liquid/Solid Separation Neutralization	2	b	
Reactive Metals	Deactivation	2	b	
Explosives/Propellants	Thermal Oxidation/Incineration	0.05 (solids) 0.01 (liquids)	b b	
	Chemical Deactivation	2	2	
Compressed Gases/Aerosols	Thermal Oxidation/Incineration	0.01	1	
	Chemical Redox	2	1	

Table 2-3. Activity Per Unit Mass Ratio (AMR) for Selected Waste Types (from Ades, 1996)

^a A₁/m₁ is the radioactivity per unit mass ratio before treatment; A₂/m₂ is the radioactivity per unit mass ratio after treatment; the radioactivity is assumed to be the same before and after treatment. Except for amalgamation and surface decontamination of hazardous metals, values include a factor of 2.0 to account for stabilization of residual wastes. For example, the AMR of 1/100 for thermal treatment of wastewater is the product of 1/200 for thermal treatment and 2 for stabilization of the residuals. ^b Not used in the analysis

;

2.3.1 Sort Waste Streams by Disposal Type

As discussed in Section 2.1.2 and shown in Figures 1-2 and 2-1, the treated MLLW was categorized based on whether it was expected to be disposed of as residual MLLW or LLW. In the previous site review discussed in Section 2.1.3, some sites identified waste streams known to contain TRU radionuclides with concentrations between 10 and 100 nCi/g. Treatment of these waste streams by a process that reduces the mass of waste by more than a factor of 10 (e.g., incineration) will result in TRU waste. Because the resulting concentrations of TRU radionuclides will be greater than 100 nCi/g, the regulatory threshold for TRU waste, the resulting wastes cannot be disposed of as MLLW. In general, these wastes are expected to be disposed of at the Waste Isolation Pilot Plant (WIPP), a TRU waste repository under construction in New Mexico.

Waste streams that will become TRU waste after treatment were identified by some sites and are identified in this report as TRU waste resulting from treatment of MLLW.

2.3.2 Review by DOE Sites

The assumptions pertaining to the treatment processes and the preliminary estimates of values for parameters were reviewed and modified by each site to reflect the current knowledge of the site treatment personnel. These reviews were used to update the estimates of final waste volumes and concentrations of radionuclides (discussed in the next section). In some instances, this new information allowed the addition or deletion of waste streams.

2.4 EVALUATE RADIONUCLIDE CONCENTRATIONS IN TREATED WASTE

Many of the waste streams identified in the MWIR and STP databases had sufficient radiological characterization to make estimates of the treated concentrations of radionuclides in the waste. For this project, sufficient radiological characterization meant that a listing of at least one of the radionuclides in a waste stream and an estimate of its concentration was available from the MWIR database or from site input. These waste streams were identified, estimates of radionuclides concentrations in the residual MLLW were made, and the resulting concentrations were compared with the permissible radionuclide concentrations in waste estimated by the PE project (DOE, 1996). Waste streams with insufficient radiological characterization were identified and not analyzed further in this evaluation; additional radiological characterization will be required prior to evaluating these waste streams.

2.4.1 Estimate Radionuclide Concentrations in Residual MLLW

Using both the physical, chemical, and radiological characteristics of the waste streams reported in the MWIR database and the assumptions about the treatment processes for each waste stream, estimates were made for the changes in radionuclide concentrations in waste due to treatment. The concentration in the residual MLLW streams for each radionuclide *i*, C_{Fi} , was estimated using Equation 2 and assumptions similar to those associated with Equation 1.

$$C_{Fi} = C_{Ii} \times \frac{1}{AMR} \times \frac{\rho_{b-final}}{\rho_{b-initial}}$$

where

 C_{ii} is the initial concentration of radionuclide *i* for the waste stream (μ Ci/m³).

Radionuclides with half-lives less than 5 years were not included in either this analysis or the PE project due to their limited effect on the long-term aspects of disposal.

(2)

When data were available, the values assumed for C_h were those given in the MWIR database. When mean concentration values were not given, the geometric mean was calculated based on the range of concentrations given in the MWIR. An approximation of the geometric mean, \overline{C}_{h-g} , was calculated using the following equation:

$$\overline{C}_{li-g} = \sqrt{\overline{C}_{li-a}^2 - (f) \left(\frac{\Delta C_{li}}{2}\right)^2}$$
(3)

where

 \overline{C}_{Ii-a} is the arithmetic mean;

f = 0.99 and is the fraction of the distribution used to represent the reported minimum and maximum values; and

 ΔC_{Ii} is the difference between the maximum and minimum values.

Mean values were used instead of maximum values because (1) treatment processes tend to provide a homogenization that results in concentrations of radionuclides near their mean, and (2) the range of radionuclide concentrations was generally based on a smaller scale (e.g., drums), which results in a wider range of values than when aggregated to a larger scale (e.g., waste stream).

Distributions of radionuclides were assumed for residual MLLW streams that identified radionuclides as mixed fission products (MFP), mixed activity products (MAP), depleted uranium (DU), and natural uranium (Table 2-4). These distributions were based on an average decay of 20 years (an estimate of the average time between waste characterization and disposal), and radionuclides with half-lives less than 5 years were not included. If site-specific information about the mixed fission or activity products or about depleted or natural uranium was available, the initial distributions were revised to reflect the site-specific information.

For residual MLLW streams that had one or more radionuclides without concentrations, the concentrations of the remaining radionuclides were evaluated and the missing data noted.

Radionuclide	Relative Activity (%)			
M	=P			
SR-90 (and Y-90)	47.0			
Tc-99	0.02			
Cs-137	49.0			
Cd-113m	0.13			
Sn-121	0.09			
Sm-151	1.4			
Eu-152	2.0			
Eu-154	0.36			
DU				
U-238	100.0			

Table 2-4. Assumed Distributions for Mixed Fission Products (MFP), Mixed Activity Products
(MAP), Depleted Uranium (DU), and Natural Uranium

Radionuclide	Relative Activity (%)		
MA	AP		
C-14	7.0		
Co-60	67.0		
Cs-137	5.0		
Eu-152	3.0		
Eu-154	18.0		
Natural Uranium			
U-234	48.7		
U-235	2.2		
U-238	49.1		

2.4.2 Compare Radionuclide Concentrations in Residual MLLW with Concentration Estimates in the PE Report

The grouted waste form was used in the PE project (DOE, 1996) to develop estimates of limiting concentrations of radionuclides in waste. However, waste forms other than grout are also expected to be used for MLLW. In this analysis, the final waste form for each waste stream was based on both site-specific treatment plans and input received from site reviews. For residual MLLW streams that resulted in grouted residuals, polyethylene microencapsulation, polyethylene macroencapsulation, or glass waste forms, the concentrations of radionuclides were compared with limiting concentrations derived for the 15 DOE sites in the PE project. The comparisons allowed accounting for the differing performances of these waste forms in the groundwater pathway. Residual MLLW streams that resulted in other waste forms were compared with the PE limits for grout.

Leach rate models for polyethylene microencapsulation, polyethelene macroencapsulation, and glass waste forms were recently summarized for DOE (SNL, 1996). Because the water pathway analysis used in the PE project allows the substitution of other waste forms in place of grout, the results of the leach rate modeling enabled the determination of permissible concentrations for the other three waste forms. The results of these recent analyses using the three waste forms (polyethylene microencapsulation, polyethylene macroencapsulation, and glass) are presented in Appendix B and account for the differing performances of these waste forms in the groundwater pathway. For radionuclides that were limited by the intrusion pathway, the limits based on intrusion for the grouted waste form from the PE project were used for all four waste forms.

The comparisons of radionuclide concentrations were made using the sum-of-fractions (SOF) method described in 10 CFR Part 61.55:

$$SOF = \sum_{i} \frac{C_{i-waste}}{C_{i}}$$

where

 $C_{i\text{-waste}}$ is the concentration of radionuclide *i* in the treated waste (μ Ci/m³); and C_i is the concentration limit for radionuclide *i* in waste as estimated in the PE report (μ Ci/m³).

The comparisons of radionuclide concentrations in residual MLLW with the concentration limits from the PE for the 15 DOE sites were placed into one of four categories, depending on the result of the calculation in Equation 4. These categories are summarized in Table 2-5.

Category Symbol	Sum of Fractions (SOF)	Description
ο	SOF ≤ 0.1	Concentrations in residual MLLW are one or more than one orders of magnitude below the PE limits. These wastes are highly likely to be technically suitable for disposal at that site.
	0.1 < SOF ≤ 1.0	Concentrations in residual MLLW are equal to or less than one order of magnitude below the PE limits. These wastes are also likely to be technically suitable for disposal at that site but by a smaller margin than the category described above.
	1.0 < SOF ≤ 10	Concentrations in residual MLLW are less than or equal to one order of magnitude above the PE limits. Although the combined concentrations of radionuclides in waste are greater than the PE limits for these streams, many conservative assumptions were used to develop the PE and the residuals analysis, and more detailed analyses (i.e., site-specific performance assessments) may show that these waste streams will also be technically suitable for disposal.
•	SOF > 10	Concentrations in residual MLLW are more than one order of magnitude above the PE limits. As with the wastes in the previous classification, more detailed analyses (i.e., site-specific performance assessments) may show that these waste streams will also be technically suitable for disposal. However, a revised treatment plan, disposal design, or disposal location may also be required for some of these wastes.

Table 2-5.	Categories for	Comparison	of Radionuclio	le Concentrations	s in Residual	MLLW	with
	the PE Limits						

3. RESULTS

The results of the analysis are presented in terms of (1) volumes of treated MLLW for disposal and (2) comparisons of radionuclide concentrations in residual MLLW to the limiting concentrations of radionuclides in waste that were estimated by the PE project (DOE, 1996). The volumes of waste are associated with the sites that have generated or expect to generate the waste. While treatment may occur either on-site or off-site, an assumption used in this analysis to track individual waste streams was that the waste stream remained associated with the site that generated the waste stream unless a final disposal location had been identified or some other agreement had been made for a particular waste stream. This approach is consistent with the general language contained in most FFCAct consent orders.

3.1 VOLUMES OF WASTE FOR DISPOSAL

The waste streams evaluated in this report consist of the MLLW that was identified (1) in both the 1995 update to the MWIR database and in the site treatment plans and consent orders required by the FFCAct and (2) through site review in which some sites added newly generated waste streams. In this report, the volume of MLLW was estimated by using site-specific updates to the volume estimates in the 1995 version of the MWIR database. These site-specific updates were performed during April through July of 1996 and were coordinated with the site contacts identified in the MWIR database. Because the estimates of actual and projected volumes of waste change with time, the volume estimates presented in this report may be different than those in other DOE reports.

3.1.1 Complex-Wide Volumes of Waste for Disposal

Based on the information in the MWIR and STP databases and on site reviews, the initial total volume of MLLW before treatment used in this analysis is estimated to be 130,300 m³. This initial total volume has been divided into three main categories in Figure 3-1: volume of treated MLLW for disposal; volume reduced due to treatment; and volume not included in the analysis due to lack of data. Based on the assumptions outlined in Chapter 2, the volumes of treated MLLW for disposal can be further subdivided into three categories: residual MLLW, LLW, and TRU waste. These "after treatment" volumes of waste are based on the type of hazardous constituents in the waste, the method chosen to treat the waste, and the assumed changes in volume due to treatment.

About 7% (9000 m³) of the initial total volume of MLLW was not included in the analysis because a preferred treatment process had not been specified by the sites. As characterization of waste continues and feasible treatment alternatives are identified, this volume is expected to decrease. Some of the waste streams represented by this volume, typically those that either were poorly characterized or had unique characteristics that made identifying a preferred treatment process difficult, may be candidates for advanced treatment processes being developed by DOE.

Figure 3-1. Categorization of the initial total volume of MLLW.

The initial estimate for volume reduction of MLLW due to treatment and subsequent stabilization is expected to be about 16% (21,000 m³). Some waste streams will increase in volume due to treatment (e.g., the addition of a stabilizing agent such as Portland cement). Other waste streams will be reduced in volume due to treatment (e.g., incineration of combustible materials). This estimate of volume reduction is the aggregate of the volume changes for each individual waste stream and treatment process combination.

Of the initial total volume of MLLW, about 68% (89,000 m³) is estimated to require disposal as MLLW. This volume of waste is composed of waste streams that contain one or more "listed" RCRA constituents and hazardous debris wastes that are immobilized under the debris rule. One of the major types of MLLW that will require disposal as MLLW is "homogeneous solids and soils," a category of waste that does not significantly change volume due to treatment (Table 3-1). The waste stream-specific input data and results are contained in Appendix C.

Waste Type and Projected Treatment	MWIR Current and 5-Yr Projected Volume (m ³)	Treated Volume (m ³)	Number of Waste Streams
Combustible Organics	4,311	158	231
Non-Thermal	1,596	146	30
Incineration/Thermal	2,708	11	192
Retort/Thermal treatment/Chemical reduction	7	1	9
Debris	15,130	13,900	162
Stabilization	12,403	12,596	138
Non-Thermal	2,045	1,293	7
Macroencapsulation	6	6	5
Thermal	674	3	11
Thermal treatment/Chemical reduction	2	3	1
Inorganic Homogeneous Solids and Soils	32,121	36,166	141
Stabilization	25,094	31,122	101
Thermal Desorption	3,175	3,664	3
Thermal	3,454	904	30
Extraction/Oxidation	397	475	5
Incineration/Thermal	1	1	1
Retort/Thermal treatment/Chemical reduction	0.1	0.03	1
Lab Packs	543	375	40
Thermal treatment/Deactivation/Chemical reduction	488	179	32
Chemical Oxidation	12	135	2
Stabilization	42	60	3
Chemical reduction	1	1	3
Wastewater	2.275	96	53
Non-Thermal	553	58	17
Thermal	1,714	37	33
Direct Stabilization	5	1	1
Stabilization	1	0.1	1
Incineration/Thermal	3	0.01	1
Other	27,798	38,466	37
Unstabilized Pond Sludge, Stabilization	10 734	21 467	1
Stabilized Pond Sludge, Stabilization	16,455	16 455	1
Backlog soils Meet BDAT	284	284	2
TSCA Residues. Stabilization	61	122	
Elemental mercury Amalgamation	4	67	7
Lead cadmium beryllium and other hazardous	215	67	15
metals. Macroencapsulation			
Scintillation Cocktails, Stabilization	43	2	1
Explosives/propellants. Chemical Deactivation	0.2	0.4	1
Compressed gases/aerosols, Chemical redox	0.5	0.4	1
Liquid, Chemical reduction/Stabilization/Deactivation	0.3	0.3	1
Compressed gases/aerosols. Thermal oxidation	0.2	0.2	2
Sr Organic Waste, Thermal Oxidation	0.1	0.005	1
Organic Extraction Waste, Thermal Oxidation	0.1	. 0.004	1
Liquid, Thermal	0.2	0.001	1
Pu Scintillation, Thermal Oxidation	0.004	0.0001	1

Table 3-1. Waste Types and Projected Treatment of Residual MLLW

The procedure for reporting waste stream data in the MWIR database sometimes causes the volume estimate for waste that will require disposal as MLLW to be high by an unknown amount. In the MWIR database, if any part of a waste stream contains a particular RCRA constituent, then that RCRA constituent code was applied to the entire waste stream. Therefore, if only one drum in a waste stream contains a "listed" RCRA code, then the entire waste stream is reported as containing that listed waste. In actuality, as waste characterization continues, some of the waste identified as MLLW may eventually be determined to be LLW or non-radioactive hazardous waste. Both of these situations have occurred at several sites since data were compiled for the 1995 MWIR database, as indicated by comments during site reviews.

About 5% (6,000 m³) of the initial total volume of MLLW is expected to result in waste that can be managed and disposed as LLW. This volume of waste is composed of waste streams that either contain only "characteristic" RCRA wastes or are hazardous debris wastes that are treated with an extraction or destruction process under the debris rule.

About 4% (5,000 m^3) of the initial total volume of MLLW is expected to require disposal as TRU waste. This volume of waste is composed of waste streams that contain high activities of one or more TRU radionuclides that, when concentrated by volume reduction in treatment, will exceed the TRU concentration limit of 100 nCi/g.

3.1.2 Complex-Wide Volumes of Residual MLLW Planned for Commercial Disposal

As part of the review process for this project, the sites were asked to identify waste streams that they planned to send to commercial sites for disposal. Based on that response, of the estimated $89,000 \text{ m}^3$ of residual MLLW, the DOE sites are planning to dispose of about $49,000 \text{ m}^3$ (55% of total residual MLLW) at commercial facilities (Figure 3-2). The sites indicated for the remaining 45% of residual MLLW that either disposal plans were incomplete or the waste was designated for disposal at a DOE site yet to be determined.

Figure 3-2. Planned disposal of residual MLLW.
Many of the site contacts indicated that the commercial disposal option was being pursued because there were no other viable options for disposal of MLLW. Some site contacts indicated that they were evaluating commercial disposal for some of their wastes but that existing plans were too preliminary to identify these waste streams as being planned for disposal at commercial facilities. Based on this input, 55% of total residual MLLW may represent a low estimate of waste volumes planned for commercial disposal by the DOE sites. As shown in the following section, the largest volumes of waste for disposal at commercial facilities are from the ORR.

3.1.3 Site-Specific Volumes of Treated MLLW for Disposal

The site-specific estimates of volumes of residual MLLW are shown in Figure 3-3. Ten of the 35 sites have estimated volumes of less than 1 m^3 each; 17 of the sites have estimated volumes of less than 10 m^3 each; 22 of the sites have estimated volumes of less than 100 m^3 each. About half of the waste is located at the Oak Ridge Reservation (ORNL, K-25 site, and Y-12 plant); approximately 97% of the waste is located at four sites (ORR, PORTS, RFETS, and Hanford).

The ORR has both the largest volume of residual MLLW and the largest volume planned for disposal at a commercial facility. The largest volume of the ORR wastes planned for commercial disposal is the pond sludges already contracted for disposal at Envirocare of Utah. The RFETS has the largest volume of residual MLLW that is not currently planned for commercial disposal. Hanford is planning for on-site disposal of its residual MLLW. Accounting for the disposal plans of ORR and Hanford, approximately 32,000 m³ of residual MLLW have no planned location for disposal.

The site-specific estimates of volumes of treated MLLW that will be managed as LLW are shown in Figure 3-4. Most of the sites have relatively small volumes of this LLW; only 3 sites (ANL-W, Hanford, and SRS) will have over 1000 m³ of this waste.

The site-specific estimates of volumes of treated MLLW that will be managed as TRU waste are shown in Figure 3-5. These TRU wastes result from treatment of MLLW containing TRU radionuclides with concentrations between 10 and 100 nCi/g; the concentrations increase to above the TRU limit of 100 nCi/g as the mass of waste is reduced by thermal treatment. The majority of this waste is located at INEL.

3.2 EVALUATION OF RADIONUCLIDE CONCENTRATIONS IN RESIDUAL MLLW

In the MWIR database, two parameters related to radiological characteristics of the waste streams – mean concentrations and concentration ranges for the radionuclides in the waste streams – were used in the concentration analysis. However, not all of the listings of waste streams in the MWIR database include information about these radiological characteristics. For the waste streams that result in residual MLLW, the available radiological data were used to compare the concentrations of radionuclides in residual MLLW with the permissible concentrations of radionuclides in waste that were estimated by the PE project (DOE, 1996).

Figure 3-3. Volumes of residual MLLW by site.

Figure 3-4. Volumes of LLW by site.

Figure 3-5. Volumes of TRU waste by site.

3.2.1 Waste Volumes Included in the Analysis of Radionuclide Concentrations

About 70% (62,000 m³) of the estimated volume of residual MLLW is included in the comparison with the PE limits (Figure 3-6). This volume of waste is associated with about 61% (388) of the 635 residual MLLW streams. Therefore, about two-thirds of the residual MLLW has sufficient radiological characterization data to make comparisons with the PE limits. The percentage of waste streams that have sufficient radiological characterization data is less than the concomitant percentage of waste volumes because several waste streams with smaller volumes do not yet have radiological characterization data.

The concentrations of radionuclides are unknown for approximately 1/3 of the residual MLLW; this data gap results in a significant uncertainty related to disposal of these wastes. However, viewed from another perspective, the data in Figure 3-6 indicate that the size of the evaluated sample of residual MLLW is approximately 2/3 of the total residual MLLW. In addition, about 1/4 of the residual MLLW volume that currently does not have associated radiological characterization is from 5-year projections of waste to be generated. Continued efforts to characterize waste will provide more information.

Figure 3-6. Residual MLLW volume and waste streams included in the analysis of radionuclide concentrations.

3.2.2 Comparison of Radionuclide Concentrations in Residual MLLW to the PE-Derived Limits

Sum-of-Fraction Results for Individual Waste Streams

The PE project (DOE, 1996) provided estimates of permissible concentrations in waste for 58 radionuclides that are expected to be present in residual MLLW. The analyses used in the PE project were simple and conservative representations of the disposal facility environment compared to most site-specific performance assessments. The disposal facility designs evaluated in the PE project were a below-ground trench design and an above-ground tumulus design. The waste form evaluated in the PE project was grouted treatment residuals.

While grouted treatment residuals are expected to compose a large portion of the disposed MLLW, other waste forms are also likely be used. The analysis framework used in the PE project was designed to allow for substitution of other waste form models. Models for evaluating the performance of polyethylene micro- and macroencapsulation and glass waste forms in MLLW disposal facility environments have recently been summarized (SNL, 1996). To establish permissible radionuclide concentrations for these other waste forms, these waste form models were used in place of the grouted waste form model in a PE-type analysis (see Appendix B). This set of concentrations for the three new waste forms was used to categorize waste streams that are expected to be disposed of as a micro-encapsulated polyethylene waste form, a macro-encapsulated polyethylene waste form, or a glass waste form.

The permissible concentrations estimated in the PE were based on the assumption that each radionuclide contributed the entire permissible dose to the limiting pathway. This approach was taken to provide PE-derived results that are appropriate to use with the sum-of-fractions calculations when evaluating waste streams with multiple radionuclides.

For both the limiting concentrations of radionuclides estimated in the PE project and the estimated radionuclide concentrations in the residual MLLW streams, identical units were used for radionuclide concentrations (i.e., μ Ci/m³). However, the volume scales for which these concentrations are derived are different, so that direct comparisons must be made with circumspection. The radionuclide concentrations derived from the PE project were based on the average concentration of all waste in the disposal facility. The concentrations of radionuclides in the residual MLLW streams were averaged for the volume of the waste stream, a volume which is generally much less than the total waste volume in the disposal facility.

Because of the differences in scale and because of the conservative nature of the analyses in the PE project related to site-specific performance assessments, direct comparisons of the concentrations of radionuclides in residual MLLW streams with the PE-derived limits cannot result in definitive statements about the acceptability of a particular waste stream at a particular site. However, the comparison of the concentrations of radionuclides in the waste streams to the PE-derived limits can provide an indication of the potential acceptability of the waste streams for disposal.

The radionuclide concentrations in the individual waste streams were compared with the PE-derived limits using the four sum-of-fractions (SOF) categories and symbols defined in Table 2-5. The SOF rule (Equation 4) was used because many waste streams contain multiple radionuclides.

The radionuclide concentrations for each specific waste streams were compared to the PE-derived limits for radionuclide concentrations for disposal at each of the 15 DOE sites. These comparisons are presented in two tables in Appendix D (one for a trench facility design and the other for a tumulus design). For purposes of illustration, a hypothetical example of site-specific results for several waste streams is presented in Table 3-2. The five waste streams in the hypothetical example are presented solely to show how such comparisons might be made and to provide background on the summary tables presented later in this section. The data, as presented in Table 3-2, could apply to either a trench or tumulus disposal facility design.

In Table 3-2, the concentrations of radionuclides in five hypothetical waste streams are compared with the PE-derived limits for radionuclide concentrations at the 15 sites. For this purpose, each waste stream is categorized using the SOF symbols defined in Table 2-5. Waste streams 1, 2, and 3 illustrate cases in which one or more sites result in either the O- or \Box -symbol, indicating that the combined radionuclide concentrations in the waste stream are below the limiting concentration estimated in the PE project. Although waste stream 3 has an \bullet -symbol for the disposal facility at ORR, all other disposal facilities offer more favorable technical options for accepting this waste stream. In a subsequent table, the results are reported for a separate analysis in which each waste stream is assumed to be disposed of in the facility that presents the most optimal characteristics for accepting it.

 Table 3-2. Hypothetical Comparison of Waste Streams and Sites with Site-Specific PE Results (see Appendix C for waste streams included in the analysis)

						Arid						н	lumid			
Waste Stream #	Final Volume (m ³)	LLNL	Han- ford	NTS	INEL	RFETS	SNL	LANL	Pan- tex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WV DP
1	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	22	0	0	0	0		0	0	0		0	0			0	0
3	119													•		
4	35					•					•	•	•	•	•	
5	6	•	•	•	•		•	•	•	•	•	•	•	•	•	•

Definition of Symbols (see Table 2-5 for details)

- O SOF ≤ 0.1
- □ 0.1 < SOF ≤ 1.0
- 1.0 < SOF ≤ 10
- SOF > 10

As shown in Table 3-2, hypothetical waste stream 4 is represented primarily by the \blacksquare -symbol at the arid disposal sites and primarily by the ●-symbol at the humid disposal sites. With more refined (i.e., less conservative) analyses, this waste stream would likely be acceptable for disposal in facilities at one or more of the arid sites and may be acceptable for disposal in facilities at one or more of the humid sites. Hypothetical waste stream 5 is represented by the ●-symbol for disposal facilities at all the sites; the gray shading highlights this situation. Again, with more refined (i.e., less conservative) analyses, this waste stream would likely be acceptable for disposal in facilities at one or more of the sites; however, such disposal may require a different waste form or a different treatment process.

Technical Capability of the 15 Potential DOE Disposal Sites

A site-specific summary of the comparisons of the technical capability of the facilities at the 15 DOE sites to dispose of all the residual MLLW is shown in Table 3-3. Table 3-3 (a) is based on the assumption that none of the residual MLLW is sent to a commercial disposal facility; Table 3-3 (b) is based on the assumption that approximately 32,000 m³ of the residual MLLW are sent to a commercial facility for disposal, leaving 30,000 m³ for disposal at a single DOE facility. Each DOE site was evaluated for both the trench (Table 3-3, left side) and the tumulus (Table 3-3, right side) designs. The results show the percentages of the volumes of all the residual MLLW that would fall into each of the SOF categories represented by the O-, \Box -, \blacksquare -, and \bullet -symbols for each particular disposal site.

In Table 3-3 (a), the numbers in the first row are based on the assumption that all of the residual MLLW from throughout the DOE complex would be sent to LLNL for disposal, and the distribution of the acceptabilities of the waste is shown by the sum-of-fractions symbols in the four categories. Subsequent rows present similar results for the other 14 potential disposal sites.

Table 3-3. Volume Percentage (%) of Residual MLLW by Category for Each of the 15 DOESites Evaluated for Disposal

	Site ^a	T	rench (% of	Total Volum	e)	Tı	umulus (% of	Total Volum	ne)
		0			٠	. 0			٠
		SOF ≤ 0.1	0.1 < SOF ≤ 1.0	1.0 < SOF ≤ 10	SOF > 10	SOF ≤ 0.1	0.1 < SOF ≤ 1.0	1.0 < SOF ≤ 10	SOF > 10
	LLNL	10	22	57	10	10	22	59	· 8
	Hanford	10	18	62	10	10	18	64	8
σ	NTS	10	22 ·	57	10	11	22	59	8
	INEL	10	22	58	10	10	22	60	8
<u> </u> _	RFETS	9	17	18	56	10	17	23	50
۲	SNL	10	18	27	45	10	18	29	43
	LANL	10	22	57	10	10	22	59	8
	Pantex	10	22	57	10	10	23	59	8
	ANLE	9	17	18	56	10	16	24	50
σ	PGDP	10	18	62	11	10	21	60	8
•	FEMP	9	17	21	52	10	17	30	44
Ε	PORTS	9	17	18	56	9	17	24	50
5	ORR	<1	1	10	89	<1	1	14	85
I	SRS	0	<1	25	74	12	15	20	53

(a) Distribution of Total Estimated	I Volume of Residual MLLW	$(total volume = 62,230 m^3)$
-------------------------------------	---------------------------	-------------------------------

^a WVDP was not included because disposal was evaluated only for waste streams generated at the site. Only one WVDP waste stream, with a treated volume of <1 m³ in the □-category, was considered in this analysis.

(b) Distribution of Total Estimated	Volume of Residual MLLW Minus the	Volume Planned for
Commercial Disposal (total volume	minus volume planned for commercial	disposal = $30,210 \text{ m}^3$)

	Site ^a	T	rench (% of	Total Volum	e)	Tu	umulus (% of	Total Volum	ie)
	1	0			٠	0			•
		SOF ≤ 0.1	0.1 < SOF ≤ 1.0	1.0 < SOF ≤ 10	SOF > 10	SOF ≤ 0.1	0.1 < SOF ≤ 1.0	1.0 < SOF ≤ 10	SOF > 10
Γ	LLNL	20	43	20	16	21	44	24	12
	Hanford	20	34	30	16	20	35	34	12
σ	NTS	21	43	20	16	21	43	24	12
	INEL	20	42	21	16	20	42	26	12
	RFETS	19	34	7	40	19	34	19	28
4	SNL	19	35	29	16	20	34	33	12
	LANL	21	43	20	16	20	44	24	12
	Pantex	21	43	20	16	21	44	23	12
	ANLE	19	34	7	40	20	34	19	27
σ	PGDP	20	34	30	17	20	42	26	12
	FEMP	19	34	15	32	20	34	32	14
ε	PORTS	19	34	7	40	19	34	19	27
3	ORR	<1	1	20	79	<1	1	28	70
II	SRS	1	<1	22	76	24	30	12	34

WVDP was not included because disposal was evaluated only for waste streams generated at the site. Only one WVDP waste stream, with a treated volume of <1 m³ in the □-category, was considered in this analysis.

Based on the assumptions applying to Table 3-3 (a) and assuming disposal in a facility using the trench design, about 10% of the residual MLLW for disposal in facilities at the arid sites and about 50 to 90% of the residual MLLW for disposal in facilities at the humid sites would be in the category represented by the •-symbol. This observation indicates that, in general, disposal facilities located at DOE sites in the arid regions of the country have better capabilities for accepting treated MLLW than do those located in humid regions of the country. The differences in these percentages for disposal facilities based on trench versus tumulus designs are not significant for disposal facilities located at DOE sites in arid regions of the country; however, the tumulus design does offer a slight long-term advantage for disposal facilities located in the humid regions. This information confirms the benefits of using engineered barriers in disposal facilities located in humid regions. More refined (i.e., less conservative) analyses may lead to increases in the percentages of the residual MLLW that could be considered acceptable for disposal at each of the DOE sites.

In Table 3-3 (a), RFETS and SNL have much higher percentages of residual MLLW that fall into the \bullet -symbol category than do other DOE facilities located in arid regions, and PGDP has a much lower percentage in this category than do other DOE facilities located in humid sites. As discussed in the PE report (DOE, 1996), RFETS, even though located in the western U.S., has characteristics typical of a more humid site (e.g., a higher recharge rate and a thinner unsaturated zone). As a result, RFETS has limits for acceptable radionuclide concentrations similar to sites in the humid region of the country. At SNL, the acceptable concentration limits for Tc-99, based on the PE analysis, are lower than for disposal facilities at other arid sites because it is limited by the water pathway, and some large-volume waste streams containing this radionuclide result in higher dilution than at other humid sites when leachate is assumed to be mixed with the groundwater. As a result, when compared with the PE limits for disposal at PGDP, the large-volume waste streams containing Tc-99 fall into the category represented by the \blacksquare -symbol.

The volume percentages associated with the \bullet -symbol in Table 3-3 (b) tend to be higher than in Table 3-3 (a), indicating that the residual MLLW with lower concentrations of radionuclides are planned for commercial disposal. This information is consistent with the knowledge that Envirocare of Utah, the only operating commercial disposal facility for MLLW, has relatively restrictive disposal limits.

Best Technical Combinations for Disposal of Waste from Each Generating Site

Each residual MLLW waste stream, having been analyzed for disposal acceptability at 15 different DOE sites, is evaluated in this section with regard to its best technical acceptability among the 15 DOE sites. The volume of each residual MLLW waste stream is assigned to the best technical SOF category that is indicated in Appendix C for that particular waste stream. The results of this analysis are summarized in Table 3-4 according to the analyzed residual MLLW volume at each of the DOE waste-generating sites that own residual MLLW. In Table 3-4, none of the waste is assumed to be sent to a commercial disposal facility, and, as before, results for both trench and tumulus designs are presented.

Site Generating Waste ^a		Trenc	:h (m³)⁵			Tumul	us (m³) ^b	
MLLW included in the analysis)	0 SOF ≤ 0.1	□ 0.1 < SOF ≤ 1.0	■ 1.0 < SOF <u>≤ 10</u>	● SOF > 10	0 SOF ≤ 0.1	□ 0.1 < SOF ≤ 1.0	■ 1.0 < SOF ≤ 10	• SOF > 10
ANL-E (100%)	11	121	35	6	11	121	35	6
Battelle (~100%)	<1 [,]	0	0	0	<1	0	0	0
BNL (~100%)	<1	0	0	0		0	0	0
Bettis (~100%)	<1	<1	<1	1	<1	<1	<1	1
Charleston NSY (~100%)	<1	0	0	0	<1	0	0	0
ETEC (~100%)	0	<1	0	0	<1	0	0	0
FEMP (97%)	148	30	48	111	148	30	48	111
Hanford (~100%)	448	2,144	4,309	2,056	2,096	892	4,114	1,855
INEL (incl. ANL-W) (4%)	4	<1	2	<1	4	<1	2	<1
KAPL-N (12%)	3	<1	0	0	3	<1	0	0
KAPL-K (29%)	4	0	0	0	4	0	0	0
LANL (93%)	63	0	62	<1	69	0	56	<1
LLNL (100%)	0	<1	69	897	0	<1	180	786
Mare Island NSY (100%)	17	0	0	0	17	0	0	0
Mound (<1%)	0	<1	0	0	0	<1	0	0
Univ. of Missouri (~100%)	0	0	<1	0	0	0	<1	0
NTS (~100%)	<1	0	0	1	<1	0	0	1
Norfolk NSY (100%)	2	. 0	0	0	2	0	0	0
ORR (K-25 and Y-12 Sites) (65%)	0	624	29,769	1,349	0	624	29,769	1,349
Pearl Harbor NSY(~100%)	<1	0	0	0	<1	<1	0	0
Portsmouth NSY (<1%)	<1	0	0	0	<1	0	0	0
PORTS (99%)	276	2,361	<1	64	255	2,382	<1	63
Puget Sound NSY (~100%)	4	<1	0	0	4	<1	0	0
Pantex (51%)	63	0	0	0	63	0	0	0
RFETS (64%)	5,177	8,562	1,298	1,678	5,177	8,562	2,602	374
SRS (97%)	170	0	35	204	247	0	14	147
WVDP (~100%)	0	<1	0	0	0	<1	0	0
Totals	6,389	13,842	35,628	6,365	8,099	12,612	36,819	4,693

 Table 3-4.
 Summary of Best Technical Combinations of Waste and Disposal Sites for Residual MLLW, Based on Radionuclide Content

a Does not include General Atomics, Former Laboratory for Energy-Related Health Research, Lawrence Berkeley, Knolls Windsor, Ames, Paducah, Weldon Springs, Sandia Labs, RMI, and Oak Ridge Lab. Insufficient data were available to calculate waste stream concentrations for these sites.

b Based on the most favorable comparison of waste stream concentrations with the PE limits

The first line of Table 3-4 shows results for the Argonne National Laboratory East (ANL-E) site. It indicates that 100% of the residual MLLW at that site is included in the analysis. The results for ANL-E are the same for both the trench and tumulus designs. The results can be interpreted as follows: 11 m^3 of ANL-E's residual MLLW fall, most favorably, into a SOF O-category at one or more of the 15 DOE sites being considered for potential MLLW disposal; 121 m³ fall, most favorably, into the SOF \Box -category at one or more of the 15 DOE sites; 35 m^3 fall, most favorably, into a SOF \blacksquare -category at one or more of the 15 DOE sites; and 6 m³ fall into a SOF \blacksquare -category at one or more of the 15 DOE sites.

The last line of Table 3-4 totals the residual MLLW volumes by SOF categories. For the trench design, the combined volumes of waste that fall into the categories represented by the , O-, \Box -, or \blacksquare -symbols are 55,859 m³ (6,389 + 13,842 + 35,628); for the tumulus design, the comparable total is 57,530 m³ (8,099 + 12,612 + 36,819). The majority of the waste that falls into the \blacksquare -category are the pond sludges at ORR that are planned for disposal in the commercial facilities operated by Envirocare of Utah.

In Table 3-4, the combined volumes for the various SOF categories are generally shifted slightly to the left (i.e., to more technically acceptable disposal combinations) for the tumulus design compared with the trench design. This shift is indicative of the slight additional performance gained by using the tumulus design. The additional benefit of using a tumulus design instead of a trench design is small because the best technical combinations of waste streams and disposal sites for both facility types typically represent disposal at more arid sites; these sites typically do not benefit from use of facilities with additional engineered barriers. The additional performance gained by using additional engineered barriers is greater at humid disposal sites; additional engineered barriers are used at ORR and SRS for disposal of low-level waste.

Summary of Residual MLLW by Controlling Radionuclides

The controlling radionuclides for those MLLW streams that are potentially problematic for disposal at all 15 sites are listed in Table 3-5. These waste streams are shown in Appendix D with gray shading. Table 3-5 was compiled by assigning the treated volume of the residual MLLW stream to each associated controlling radionuclide, summing the volumes assigned to each controlling radionuclide, and calculating the resulting volume percentage of residual MLLW for each controlling radionuclide. The total volumes of potentially problematic MLLW differ for the trench (6360 m³) and tumulus (4700 m³) designs, so the results in Table 3-5 must be compared with caution. In addition, most waste streams have more than one controlling radionuclide, so the total volume percentage in the table exceeds 100%. Controlling radionuclides with a volume percentage greater than 25% are indicated by gray shading in Table 3-5; those with volume percentage greater than 25% are indicated by bold italics. While several radionuclides are in more than 55% of the waste volume, U-234, U-235, Pu-239 and Pu-240 are associated with the largest volumes of potentially problematic MLLW.

Controlling Radionuclide ^a	Trench (% of Total Volume)⁵	Tumulus (% of Total Volume) ^c
Н-3	1.7	<1
C-14	2.8	3.5
AI-26	<1	<1
K-40	1.4	1.9
Ni-63	1.1	1.5
Sr-90	9.1	8.0
T <u>c-</u> 99	17.0	23.0
1-129	<1	<1
Cs-137	5.5	2.2
Ra-226	5.7	7.7
Th-230	14.6	19.8
Th-232	1.5	2.0
U-232	1.4	1.9
U-233	1.4	1.9
U-234	31.7	43.0
U-235	40.1	54.4
U-236	<1	<1
U-238	12.0	16.2
Np-237	16.0	21.7
Pu-238	1.4	1.9
Pu-239	32.7	16.5
Pu-240	26.4	8.0
Pu-242	1.4	1.9
Am-241	1.8	<1
Am-243	1.4	1.9

 Table 3-5.
 Volume Percentages of Potentially Problematic MLLW Associated with Their Associated Controlling Radionuclides

a A controlling radionuclide is defined as one that exceeds its individual disposal limit.

b Based on a total volume of 6360 m³
 c Based on a total volume of 4760 m³

3.2.3 Estimated Total Inventory of Radionuclides in Residual MLLW

An estimate of the inventory of radionuclides in the residual MLLW is shown in Table 3-6 for the waste streams that have sufficient radiological characterization to make comparisons with the PE limits. This estimate was developed by multiplying the initial (untreated) volume for each waste stream by the initial average concentrations of radionuclides in that waste stream, and then summing the inventories of each radionuclide over all waste streams. The total initial (untreated) volume of waste associated with these inventories is approximately 53,300 m³. Because some waste streams in the MWIR database have insufficient radiological characterization data to be included in this analysis, this inventory is likely to represent a lower bound estimate.

Radionuclide	Total Activity	Radionuclide	Total Activity	Radionuclide	Total Activity
	(Ci)		(Ci)		(Ci)
Н-3	2.8E+06	Sn-126	2.7E-10	U-232	1.9E+00
C-14	2.7E+02	I-129	4.7E-02	U-233	1.6E-01
AI-26	4.5E-02	Cs-135	1.9E-10	U-234	4.0E+01
K-40	2.4E-01	Cs-137	9.9E+05	U-235 [*]	2.3E+01
Co-60	3.0E+03	Ba-133	3.6E-05	U-236	2.3E-01
Ní-59	8.5E+01	Sm-151	2.9E+02	U-238 ^ª	4.1E+02
Ni-63	9.9E+03	Eu-152	4.2E+02	Np-237	2.4E+01
Se-79	3.6E-10	Eu-154	7.5E+01	Pu-238	1.5E+02
Kr-85	2.5E-06	Pb-210	1.2E-02	Pu-239	8.2E+02
Sr-90	1.3E+04	Bi-207	1.2E-02	Pu-240	6.6E+02
Zr-93	2.8E-09	Bi-208	4.2E-04	Pu-241	8.4E+02
Nb-93m	2.9E-10	Ra-226	4.1E+01	Pu-242	9.5E-01
Nb-94	1.1E-07	Ra-228	2.4E-01	Pu-244	1.5E-04
Tc-99	3.2E+02	Th-229	7.0E-08	Am-241	3.7E+00
Cd-113m	2.7E+01	Th-230	7.3E+00	Am-243	2.7E-01
Sn-121	1.9E+01	Th-232 *	9.2E+00	Cm-243	1.4E-02
Sn-121m	4.1E-11	Pa-231	7.8E-02	Cm-244	1.1E-02

Table 3-6. Estimate of Inventory of Radionuclides in DOE Residual MLLW

^a Total combined activities appear unreasonably high, possibly indicating incorrect data in the MWIR database.

3.2.4 Waste Forms for Disposal

The waste forms selected for evaluation were based on data in the site-specific STPs and on assumptions pertaining to treatment made by the MWFA and reviewed by several sites. Based on the waste streams that have sufficient radiological characterization to make comparisons with the PE-derived limits, the percentage of residual MLLW volume associated with the preferred waste forms are shown in Figure 3-7. Grouted residuals represent the largest amount, nearly 80% of the total volume of residual MLLW; when combined with waste streams that will be stabilized with grout or polymer, this percentage increases to 88%. Soils represent 10% of the total volume of residual MLLW. Current planning at the DOE sites does not indicate planned use of enhanced waste forms for large volumes of MLLW.

Figure 3-7. Estimate of volumes associated with various waste forms for DOE residual MLLW, based on a volume of 62,230 m³.

4. DISCUSSION

The results presented in this report are based on a scoping-level analysis to provide technical information to DOE decision makers, their regulators, and stakeholders associated with disposal of DOE MLLW managed under the FFCAct. Many simplifying assumptions were made in the development of this analysis. Additionally, there are many uncertainties in the waste stream characterization data, in the plans for treatment of wastes, and the effects of treatment on waste volumes and radionuclide concentrations. The effects of these assumptions and uncertainties on the results of the analysis are discussed in this section. Additionally, a discussion is provided that places the magnitude of MLLW disposal in perspective with disposal of DOE LLW.

4.1. Assumptions and Uncertainties

The assumptions and uncertainties in the analysis for the volume changes in the waste are discussed in Section 4.1.1, and those for the concentrations of radionuclides are discussed in Section 4.1.2.

4.1.1. Volumes of Waste for Disposal

Several assumptions and uncertainties are important in estimating volumes of waste for disposal. They are important to (1) the use of the data for estimating waste stream volumes and (2) the selection and evaluation of treatment options.

Data for Estimating Waste Stream Volumes

The primary sources of input data for volumes of waste used in the analyses were the 1995 MWIR database and updates based on site-specific reviews. The MWIR database has evolved over the last four years in response to additional waste characterizations and increased knowledge of waste characteristics at the DOE sites, and the site-specific updates reflect more recent changes due to treatment of waste and better estimates of existing waste volumes and projections of future wastes.

The volumes of wastes associated with current inventories of each waste stream are known; very little uncertainty exists in these numbers because they have been measured. However, larger uncertainties exist in the volume estimates associated with the 5-year projections of wastes to be generated; there are often uncertainties in the operations that will generate these wastes. The values used for these projected volumes reflect the best estimates of the DOE site personnel responsible for generating these wastes. The actual generation rates may be higher or lower than estimated for some waste streams, and the duration of the waste generation may be longer or shorter than the five-year period for which estimates are provided.

Selection and Evaluation of Treatment Options

The treatment processes selected for each of the waste streams were based on "preferred alternatives" in site treatment plans. While many of the preferred alternatives were associated with specific, existing treatment facilities, preferred alternatives for some waste streams were

either non-specific, were based on proposed facilities that have no operating data, or were not specified.

For waste streams associated with existing, operating treatment facilities, no major assumptions were required to estimate the results of treatment; the operating parameters of the treatment process were supplied by the site contacts during the review process. For waste streams associated with either treatment facilities that were non-specific or not existing, professional judgment was used to develop estimates of the effects of treatment on the waste streams. Research conducted at the SRS (WSRC, 1995) was used as the basis for the estimates of the effects of treatment used in this analysis. This work at SRS contained an analysis for wastes at that site that is similar to the one described in this report. The uncertainties about the selection of the actual treatment process to be used for these wastes are larger than the uncertainties about the effects of specific treatment processes on wastes. For example, a waste tentatively planned for incineration and grout stabilization (AMR = 1/100) may eventually be treated solely by stabilization in grout (AMR = 2), with a resulting change in estimated final volume of 200. This potential difference is much greater than that due to the uncertainty about the effects of grout-stabilizing wastes (e.g., if the AMR for this treatment ranges from 1.5 to 3).

Waste streams that had no preferred alternative treatment were identified but not analyzed, so that no assumptions were required to analyze these wastes. However these waste streams present a significant uncertainty for disposal due to the lack of plans for their treatment.

4.1.2. Concentrations of Radionuclides

Topics discussed in this section are (1) the effect of assumptions and uncertainties related to concentrations of radionuclides in residual MLLW for the input data used in the analysis, (2) the effects of treatment on radionuclide concentrations in residual MLLW, (3) the conservatism incorporated into the PE-type analysis of disposal with which these concentrations are compared, and (4) the effects of scale on the average concentrations used in this analysis.

Data for Estimating Radionuclide Concentrations in Waste Streams

The primary sources of data for waste characterization were the 1995 MWIR database and updates based on site-specific reviews. Much of the data are based on detailed characterizations of the MLLW, but a large portion of the data are based on "process knowledge" of the engineers and operators of the production processes that created these wastes. Some of the waste streams listed in the database remain sufficiently uncharacterized to preclude assigning a preferred treatment alternative.

Although the MWIR database is the product of a complex-wide data call, the quality of data from site to site is not expected to be uniform. Differences in the type and amount of wastes, the available resources to characterize the waste, and the experience of site personnel with waste characterization result in differences in data quality among the sites. Therefore, detailed inter-site comparisons of specific data should be made with caution, and site contacts should be utilized for more detailed evaluations of data.

Characterization data for many waste streams in the MWIR database are based on relatively small sample sizes of the individual waste streams. In addition, many of the waste streams in the MWIR are actually aggregations of smaller waste streams that are expected to have similar treatability characteristics, and many of these wastes are highly heterogeneous. The combination of these conditions tends to result in larger uncertainties in the characterization data, and results of detailed analyses based on these data must be interpreted with circumspection. However, the data used in this analysis represent the best available characterization data for DOE MLLW, and the quality of the data is consistent with use in a scoping-level analysis.

About 30% of the total residual MLLW volume is attributed to waste streams that were insufficiently characterized to determine the presence of specific radionuclides or estimate their concentrations. These waste streams were identified but not analyzed further. Therefore, no major assumptions were associated with the analysis of these waste streams. However, these waste streams represent an uncertainty of unknown magnitude in the MLLW disposal configuration due to the lack of characterization.

The Effects of Treatment on Radionuclide Concentrations

For waste streams associated with existing, operating treatment facilities, no major assumptions were required to estimate the results of treatment; the operating parameters of the treatment process were supplied by the site contacts during the review process. For waste streams associated with either treatment facilities that were non-specific or non-existing, professional judgment was used to develop estimates of the effects of treatment on the radionuclide concentrations in the waste streams. The research conducted at the SRS (WSRC, 1995) was the primary basis for estimating the effects of treatment on radionuclide concentrations, with site reviews either confirming or modifying these assumptions. Waste streams that had no preferred alternative treatment were identified but not analyzed, so that no assumptions were needed for these wastes.

The assessment of the fate of radionuclides in a treatment process is inherently more uncertain than the estimation of the change in volume of waste due to treatment. For example, the specific temperature, pressure, and redox conditions in a treatment process combined with the specific chemical and physical characteristics of the radionuclide will determine the distribution of its mass in the residual solids, liquids, and gases. An analysis based on this level of detail is beyond the scope of this project and is generally beyond the level of available data and plans for specific treatment. This area represents a significant uncertainty; it can be reduced by more definitive plans for use of specific treatment processes and by more detailed analyses of those treatment processes.

The Conservative Nature of the PE Analysis

The PE analysis, which provided estimates of permissible concentrations of radionuclides for disposal that were used to compare with concentrations of radionuclides in residual MLLW, was a scoping-level analysis designed to be more conservative than most site-specific performance assessments. Because the radiological limits of site-specific WAC are based on site-specific performance assessments, these limits may be greater than those estimated in the PE analysis. Therefore, some residual MLLW streams identified as being potentially problematic for disposal may be shown to be less problematic when compared to the site-specific WACs. As site-specific facilities for disposal of MLLW are selected and their performance assessments and WACs are developed, the uncertainty related to the concentration limits for radionuclides will diminish.

Scale and Its Effect on Average Concentrations

The PE methodology, or any existing performance assessment methodology, can support statements about total inventories in a disposal facility or concentrations of radionuclides averaged for the entire volume of the disposal facility. In general, these performance analyses cannot support definitive statements about acceptability of specific waste streams based on their radionuclide content due to the differences in scale between the facility and individual waste packages for which radionuclide concentrations are averaged. The acceptability of a waste stream for disposal depends not only on the inventory and concentration of radionuclides in the waste, but also on the type and activity of waste that has already been loaded into the disposal facility.

The issues of scaling and concentration averaging are discussed more fully in the Performance Assessment Task Team (PATT) guidance (Wood et al., 1994), which recommends the establishment of an inventory tracking system to facilitate management of the loading of waste into the facility. This tracking system is designed to ensure that the maximum activity of the various radionuclides is not exceeded when the volumetric capacity of the disposal facility is achieved. The WAC documentation for a disposal site provides the guidance for limiting concentrations or inventories of radionuclides in a waste package and instructions on how to proceed (usually additional waste packaging and administrative approvals) when a waste package exceeds these limits.

Because of the differences in scale and because of the conservative nature of the the PE methodology, direct comparisons of the concentrations of radionuclides in waste streams with the PE-derived limits cannot result in definitive statements about the acceptability of a particular waste stream at a particular site. However, the comparison of the concentrations of radionuclides in the residual MLLW streams to the PE-derived limits can provide an indication of the potential acceptability of the waste streams for disposal by comparing the concentrations of radionuclides in waste with those estimated to be limiting for the disposal facility.

4.2. Analysis Results in Perspective

In this section, several topics are discussed which provide a perspective for the magnitude of the disposal issue regarding residual MLLW and for the way that this analysis should and should not be interpreted. The discussion is presented in terms of volumes of waste for disposal, concentrations of radionuclides in residual MLLW, and limitations of the analysis.

4.2.1. Volumes of Waste for Disposal

Two topics related to volumes of waste for disposal—a comparison with the historical rates for disposal of LLW and a comparison with existing disposal capacity for MLLW—provide

some perspective on the magnitude of the residual MLLW disposal issue and the work that remains to be done to resolve this issue.

Volumes of MLLW Relative to Historical Disposal Rates for LLW

Based on the analysis contained in this report, approximately $89,000 \text{ m}^3$ of treated MLLW will require disposal as MLLW (i.e., residual MLLW). Of this amount, approximately $49,000 \text{ m}^3$ was planned to be disposed of at commercial facilities, resulting in approximately $40,000 \text{ m}^3$ of waste for disposal at DOE sites or as yet undetermined locations. These volumes for disposal are based on waste that is either currently stored or projected to be generated over the next five years.

The DOE has disposed of approximately $50,000 \text{ m}^3$ of LLW at its sites every year since 1990, and has disposed of approximately $100,000 \text{ m}^3$ of this waste every year between 1982 and 1989. The DOE estimates that it has disposed of a total cumulative volume of about 3 million cubic meters of LLW (IDB, 1995).

If the 40,000 m³ of residual MLLW estimated in this report were disposed of over the 5year period of the projected volumes, it would be disposed of at a rate equal to about one-sixth that of LLW being disposed of throughout the 1990s. Additionally, the 40,000 m³ total volume of residual MLLW to be disposed of at DOE sites is less than 2% of the total volume of LLW disposed of by DOE. These comparisons indicate that the magnitude of disposal of MLLW, both in terms of rates and total volumes, will be much smaller than that of LLW.

Existing and Proposed DOE Capacity for Disposal of MLLW

Two DOE sites, Hanford and NTS, have developed disposal capacity for residual MLLW in anticipation of disposing of their own wastes. At Hanford, approximately 43,000 m³ of RCRA-compliant capacity for waste in drums has been developed. At NTS approximately 91,000 m³ of proposed capacity is available. From a technical viewpoint, these two sites, in conjunction with the planned use of commercial disposal, provide more than enough capacity for disposal of the estimated volumes of residual MLLW under agreements resulting from implementation of the FFCAct. Additional disposal capacity may also be required for MLLW generated by processes not managed under FFCAct agreements (e.g., wastes generated from future decontamination and decommissioning [D&D] and environmental restoration activities). Many other factors, including ethical, social, economic, and policy considerations relevant to disposal of MLLW, need to be addressed in determining the preferred configuration for disposal of DOE MLLW.

4.2.2. Concentrations of Radionuclides

Two topics related to concentrations of radionuclides in waste—the need for additional waste characterization, and the focusing on potentially problematic waste streams—provide some perspective on the magnitude of the disposal issue regarding residual MLLW and the work that remains to be done to resolve these issues.

Need for Additional Waste Characterization

While a large amount of data related to MLLW streams have been developed and summarized, more detailed and complete characterization will be required for many waste streams before treatment of these wastes can commence and their acceptability for disposal determined. The characterization of approximately 9000 m³ of MLLW was insufficient to determine a preferred treatment alternative. These wastes lack the most basic characterization data. About 6000 m³ of the 9000 m³ of MLLW is from 5-year projections of waste to be generated.

Approximately one-third of the residual MLLW volumes analyzed in this evaluation were associated with waste streams that had insufficient radiological characterization to permit comparison with estimates of concentration limits. Lack of knowledge of both specific radionuclide content and concentrations of known radionuclides contribute to this problem. Additional sampling and analysis will be required for many waste streams to verify waste characterization prior to treatment and disposal. Procedures such as statistical analyses could be applied to assure collection of representative samples while maintaining cost effectiveness.

Because additional characterization data will generally be required prior to treatment of waste, it will also be available for evaluating disposal options for these wastes.

Focus on Potentially Problematic Waste Streams

The comparison of radionuclide concentrations in treated wastes with the PE-derived limits is considered a scoping-level analysis to identify those wastes for which disposal considerations should be given closer attention. Waste streams that result in a sum-of-fraction greater than 10, represented by the \bullet -symbol (see Table 2-5 for symbol definition), at all disposal sites should not be considered as wastes that cannot be disposed of at any of these 15 sites; instead, they should be considered as wastes that should be scrutinized more carefully. Conversely, wastes that fall into one of the other three comparison categories can be considered likely to present few significant issues for disposal. In this sense, the scoping-level nature of this analysis serves to eliminate waste streams of little concern and to focus attention on the waste streams that require more analysis.

About 90% of the residual MLLW streams evaluated in this analysis are represented by one of the three categories that should present no significant issues for disposal, and the remaining 10% of the waste streams will require more detailed evaluations to determine if they will present a problem for disposal.

Some of the ways to evaluate these waste streams in more detail are to compare the conservatism used in the PE methodology to that used in site-specific performance assessments, to evaluate the treatment processes in more detail, and to evaluate the use of alternative waste forms. Site-specific WAC are not available for DOE MLLW disposal facilities. Therefore, evaluating the waste streams using the performance assessments and WAC for LLW disposal facilities may provide a reasonable alternative. These facilities exist at several DOE sites, and comparing the radionuclide concentrations in the waste streams with the limits in the WACs at

one or two of these sites will indicate the number of waste streams that may be acceptable for disposal based on a more refined analysis of disposal performance.

In this analysis, the effects of the treatment processes on the concentrations of radionuclides were evaluated with a simple approach. More detailed technical analyses of these treatment processes may provide a better estimate of the acceptability of residual MLLW for disposal. The greatest benefit of conducting more detailed analyses will likely be for the more advanced treatment processes, which are more difficult to represent by simple analyses. These include incineration, vitrification, and other chemical/physical treatment processes. Conversely, the more simple treatment processes, such as direct stabilization with grout or polymer, are likely to be relatively well represented by the simple analyses described in this report.

Some waste streams may require stabilization in a more durable waste form to ensure their acceptability for disposal in a MLLW facility. These more durable waste forms may be either ones that are already developed but not selected for the particular waste streams or modifications of existing waste forms. Intentionally left blank

5. CONCLUSIONS AND RECOMMENDATIONS

The analysis described in this report was a scoping-level evaluation. Although the analysis provided quantitative results that indicate the technical capability of a site to dispose of the evaluated waste streams, the conclusions derived from this evaluation are more of a general nature than a site-specific or waste stream-specific one. The analysis was based on a simple approach for representing treatment processes; it compared results to disposal limits derived from another scoping-level analysis that relied on simple models to represent site environmental conditions. The major strengths of the evaluation described in this report are that (1) it provides a substantiated estimate of the overall volume of residual MLLW that will require disposal, (2) it delineates those residual MLLW streams that are potentially problematic, allowing the DOE to focus its attention on a smaller portion of the MLLW inventory and narrow the scope of further analysis, and (3) it indicates the need for further waste characterization and continued updating of existing databases.

5.1. Conclusions

Of the approximately 130,000 m³ of MLLW considered under the FFCAct that is either currently stored or projected to be generated within the next five years and is designated for treatment, approximately 89,000 m³ will require disposal as residual MLLW, an additional 6000 m³ will require disposal after treatment as LLW, and 5000 m³ will require disposal after treatment as TRU waste. The net volume reduction due to treatment of this waste is approximately 21,000 m³. The remaining 9000 m³ of this waste was insufficiently characterized to be assigned a preferred alternative for treatment; 6000 m³ of this waste was projected waste. Of the 89,000 m³ of waste requiring disposal as MLLW, approximately 49,000 m³ is currently planned for disposal at commercial facilities; therefore, up to 40,000 m³ of MLLW will require disposal at one or more DOE facilities.

As indicated in the PE project report, all 15 sites evaluated in this project have the technical capability to dispose of some residual MLLW, and sites located in the arid region of the country tend to have higher permissible limits on radionuclide concentrations in waste than sites in the humid region of the country. Comparing the PE-derived limits with estimates of concentrations of radionuclides in residual MLLW indicates that up to 90% of the residual MLLW could be disposed of at several arid sites with little additional analysis; about 50% of this waste could be disposed of at several humid sites. More detailed analyses would likely increase both of these percentages.

Based on the volume estimates calculated in this analysis, enough capacity currently exists in commercial sites and at DOE's Hanford Reservation and Nevada Test Site for disposal of all of DOE's residual MLLW. Additional disposal capacity may also be required for MLLW generated by processes not managed under FFCAct agreements (e.g., wastes generated from future decontamination and decommissioning [D&D] and environmental restoration activities). This conclusion is based on the technical aspects of disposal only—ethical, social, economic, and policy considerations relevant to waste disposal were not considered in the analysis.

5-1

• The results of this scoping-level analysis indicate that waste streams associated with about 90% of the total residual MLLW volume evaluated in the concentration analysis are likely to present no significant technical issues for disposal and require little additional analysis. The remaining residual MLLW streams that were identified as potentially problematic require further evaluation of their treatment and disposal plans. Almost all of these potentially problematic waste streams are listed as such because disposal concentrations are limited by the assumed intrusion scenarios in the PE report; the effect of intrusion can be mitigated to some extent by burying the waste deeper.

5.2. Recommendations

- Additional waste characterization data should be collected. Of the total current and 5-year projected volume of MLLW that has been reported, about 7% (9000 m³) is attributed to waste streams that do not have enough characterization and treatment information to be included in the calculation of post-treatment volumes. Of the residual MLLW that was calculated in the analysis, about 30% (27,000 m³) is attributed to waste streams that could not be included in the comparison of radionuclide concentrations with the limits estimated by the PE project. The data on these latter waste streams either did not include a listing of radionuclides or did not provide concentrations for any of the listed radionuclides. In addition, of the residual MLLW streams that were included in the comparison, many did not have concentrations for all of the listed radionuclides.
- Future technical studies should focus on the residual MLLW streams identified in this analysis as potentially problematic. These waste streams should be re-evaluated with regard to
 - \Rightarrow site-specific WAC and performance assessments,
 - \Rightarrow alternative treatment processes,
 - \Rightarrow alternative waste forms for disposal, and
 - ⇒ different regulatory requirements (i.e., those that may change with the reissue of DOE Order 5820).

6. **REFERENCES**

- Ades, 1996. Letter from Dr. Maurice J. Ades of Westinghouse Savannah River Company to Dr.
 R. D. Waters of Sandia National Laboratories re: Volume Ratios and Densities for the Residuals Analysis (U). March 28, 1996.
- DOE (Department of Energy), 1988. "Low-Level Waste," Chap. III in Radioactive Waste Management, Order 5820.2A.
- DOE (Department of Energy), 1996. Performance Evaluation of the Technical Capabilities of DOE Sites for Disposal of Mixed Low-Level Waste. DOE/ID-10521. 3 vol. Idaho Falls, ID: U.S. Department of Energy, Office of Waste Management (EM-30).
- FFCAct, 1992. Federal Facility Compliance Act (FFCAct) of 1992. P.L. 102-386, October, 1992.
- IDB, 1995. Integrated Data Base Report 1994: U.S. Spent Nuclear Fuel and Radioactive Waste Inventories, Projections, and Characteristics, Revision 11. Prepared for the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Environmental Restoration and Waste Management. Oak Ridge, TN: Oak Ridge National Laboratory. September 1995.
- INEL (Idaho National Engineering Laboratory), 1995. MWIR-1995, DOE National Mixed and TRU Waste Database Users Guide, DOE/LLW-233, Radioactive Waste Technical Support Program, Lockheed Idaho Technologies Company, Idaho Falls, Idaho.
- Kirkpatrick, T. D., 1995. DOE Waste Treatability Group Guidance, DOE/LLW-217, Rev. 0, Radioactive Waste Technical Support Program, Lockheed Idaho Technologies Company, Idaho Falls, Idaho.
- MWFA (Mixed Waste Focus Area), 1996. Mixed Waste Focus Area Integrated Technical Baseline Report, Phase 1, DOE/ID-10524, Rev. 0, Lockheed Idaho Technologies Company, Idaho Falls, Idaho.
- RCRA, 1976. Resource Conservation and Recovery Act (RCRA) of 1976, P.L. 94-580, Stat. 2795.
- SNL (Sandia National Laboratories), 1996. Waste Form Performance Assessment Task, Draft Letter Report, TTP-AL2-6-TI-012, Sandia National Laboratories, Albuquerque, New Mexico, July.

- Waters, R.D., P.I. Pohl, W. Cheng, M.M. Gruebel, T.A. Wheeler, and B.S. Langkopf, draft of 4/24/97. Evaluation of the Capabilities of the Hanford Reservation and Envirocare of Utah for Disposal of Potentially Problematic Mixed Low-Level Waste Streams, Draft. Albuquerque, NM: Sandia National Laboratories.
- Wood, D. E., R. U. Curl, D. R. Armstrong, J. R. Cook, M. R. Dolenc, D. C. Kocher, K. W. Owens, E. P. Regnier, G. W. Roles, R. R. Seitz, and M. I. Wood, 1994. *Performance Assessment Task Team Progress Report*. DOE/LLW-157, Rev. 1, Idaho Falls, ID: Idaho National Engineering Laboratory.
- WSRC (Westinghouse Savannah River Company), 1995. Conceptual Report on Onsite and Commercial Disposal Options for SRS Mixed Waste Streams (U), WSRC-RP-95-783, Rev. 0, Solid Waste Engineering, Westinghouse Savannah River Company, Aiken, South Carolina.

Appendix A:

SITE CONTACTS

Argonne National Laboratory-East

Jim Wescott Argonne National Laboratory-East 9700 South Cass Ave., EWM/Bldg. 340 Argonne, IL 60439-4823

Argonne National Laboratory-West

Nancy Stewart Argonne National Laboratory-West EBR II Site Scoville, ID 83415

Battelle Columbus Laboratories Decommissioning Project

Steven Schmucker Battelle Columbus Laboratories 505 King Avenue, Rm 11-1-064 Columbus, OH 43201

Brookhaven National Laboratory

Glen Todzia Brookhaven National Laboratory Bldg. 445 Upton, NY 11973

Energy Technology Engineering Center

Jim Ampaya Rockwell Aerospace-Rocketdyne Div. Mail Code T006 6633 Canoga Avenue Canoga Park, CA 91303

Fernald Environmental Management Project

Joey Macy FERMCO MS 16-2 7400 Willey Road Fernald, OH 45030

General Atomics

Ken Taylor Ecology and Environment 1500 First Interstate Center 9999 3rd Avenue Seattle, WA 98104

Hanford Site

Mike Coony Rust Federal Services-Hanford MD278/C3103/200W 2355 Stevens Drive Richland, WA 99352

Idaho National Engineering Laboratory

Dave Hutchison Lockheed Idaho Tech. Co. MS 2414 765 Lindsay Blvd. Idaho Falls, ID 83415-2414

Lawrence Berkeley Laboratory

Susan Jahansooz Lawrence Berkeley Laboratory MS B75B-101 1 Cyclotron Road Berkeley, CA 94720

Lawrence Livermore National Laboratory

Glenn May Lawrence Livermore National Laboratory 7000 East Avenue, L-621 Livermore, CA 94551

Los Alamos National Laboratory

Robert Murphy Los Alamos National Laboratory TA 54, MS J593 37 Mesita del Buey Los Alamos, NM 87545

Missouri University Research Reactor

Derek Pickett University of Missouri-Columbia Research Reactor Center Research Park Drive Columbia, MO 65211

Mound Plant

Frank Smaltz DOE/Miamisburg Area Office 1 Mound Road, MS OSW-214 Miamisburg, OH 45342

Naval Reactors and Shipyards

(Charleston, Mare Island, Norfolk, Pearl Harbor, Portsmouth, & Puget Sound Shipyards; Bettis Atomic Power Laboratory, Knolls Atomic Power Laboratory-Windsor, Kesselring, & Niskayuna Naval Reactor Sites) Lawrence Kozoyed Norfolk Naval Shipyard Bldg. M-22, 3rd Floor LSMM@NNSY Code 106.4 Portsmouth, VA 23709-5000

Nevada Test Site

Colleen O'Laughlin DOE/Nevada P. O. Box 98518 2763 South Highland Drive Las Vegas, NV 89193-8518

Oak Ridge Reservation

Angel Rivera Lockheed Martin Energy Systems Hwy 58, Bldg. K-0137, MS 7357 Oak Ridge, TN 37831-7357

Paducah Gaseous Diffusion Plant

Tom Shadoan LMES/Paducah 5600 Hobbs Road, C-743 T-9 Paducah, KY 42001

Pantex Plant

Gary Baker Battelle/Pantex MS 9061 P. O. Box 30020 Amarillo, TX 79177

Portsmouth Gaseous Diffusion Plant

JoAnna Cole Portsmouth Gaseous Diffusion Plant Bldg. X7725, MS 7550 3630 US Rte 23 So. Piketon, OH 45661

RMI Titanium Company

Ward Best U.S. DOE 1800 E. 21st Street Ashtabula, OH 44004

Rocky Flats Environmental Technology Site

Bob Griffis Rocky Mountain Remediation Services RFETS Highway 93, T124A Golden, CO 80402-0464

Sandia National Laboratories

Maureen Lincoln Sandia National Laboratories P. O. Box 5800, MS 1303 Albuquerque, NM 87185-1303

Savannah River Site

Nancy Lowry Westinghouse Savannah River Company Bldg. 742-A SRS Aiken, SC 29808

West Valley Demonstration Project Elizabeth Matthews DOE/West Valley 10282 Rock Springs Road West Valley, NY 14171-1091

Appendix B:

PERMISSIBLE RADIONUCLIDE CONCENTRATIONS FOR THE POLYETHYLENE MICROENCAPSULATION, POLYETHYLENE MACROENCAPSULATION, AND GLASS WASTE FORMS BASED ON THE PE METHODOLOGY

Calculations similar to those completed for the water pathway in the performance evaluation (PE) (DOE, 1996) using a grout waste form have been completed for a macroencapsulated polyethylene waste form, a microencapsulated polyethylene waste form, and a vitreous waste form. The results of these calculations are presented in the tables in this appendix. The values shown in the tables are those that changed because of the substitution in the PE of a waste form model other than grout. Because the additional modeling affects only sites that are evaluated for a water pathway, NTS is not included in the tables.

The source terms that were used for encapsulated polyethylene waste forms and the vitreous waste form are briefly summarized below. More detailed information regarding the development of the source terms for these waste forms can be found in the "Waste Performance Assessment Task, Draft Letter Report" (SNL, 1996).

The source term model in the PE provided the correlation between radionuclide concentrations in the waste form and concentrations in the leachate that exits the bottom of the disposal facility. The source model is used to formulate the source concentration reduction factor, CRF_{Source} :

$$CRF_{Source} = C_{Waste} / C_{Leachate}$$

where

 C_{Waste} is the concentration in the waste form for each radionuclide averaged over the entire volume of waste in the disposal facility (μ Ci/L), and

 $C_{Leachate}$ is the corresponding concentration in the leachate for each radionuclide as it exits the bottom of the disposal facility (μ Ci/L).

Encapsulated Polyethylene Waste Form Source Term

The source model chosen for encapsulated polyethylene is a function of waste form size and waste loading. In these calculations, the waste form was assumed to be a 1×1 -m cylinder (i.e., roughly the size of a 55-gallon drum) and the waste loading was 50%. For use in the PE model, the dependent variable was represented in terms of leachate concentrations rather than fraction leached. In order to accomplish this translation, a mass balance was used, stating that what leaves the waste form goes into the infiltrating water:

$$C_{Leachate} = \frac{1}{Q} \frac{dF}{dt} V f_m C_{Waste}$$
(2)

where

Q is the flow rate of water through the waste site (m^3/yr) ;

(1)

F is the fraction of waste leached based on the diffusion model used (unitless); t is time (yr);

V is the volume of the waste form (m^3) ; and

 f_m is the mixing fraction, defined as the ratio of the volume of waste disposed in a unit volume of the facility trench.

The PE project arrived at concentrations by assuming that the contaminants in the waste forms are not depleted with time, so that the source term is constant. Hence, from Equations 1 and 2, the concentration reduction factor for waste stored in polyethylene is:

$$CRF_{Source} = \frac{Q}{\frac{dF}{dt}Vf_m}$$
(3)

where dF/dt is assumed to be constant throughout the period of performance.

This source model was used for macroencapsulated waste only after the waste had been disposed of for 100 years; it was assumed that the polyethylene surrounding the waste started to crack and the waste began to diffuse from the waste form after 100 years. The source concentration factors were determined at 20°C.

Vitreous Source Term

In the glass leach model, it was assumed that radionuclides can only be released from properly formulated waste glass as a result of breakdown of the glass network. A straightforward model (Cunnane and Allison, 1994) was adopted. The fraction (F) of a canistered waste glass that corrodes per year after exposure to repository groundwater environment is:

$$\frac{dF}{dt} = \frac{RA}{W} \tag{4}$$

where

R is the glass corrosion rate (g/m²-yr);

W is the mass (g) of the glass in a canister; and

A is the surface area (m^2) of the glass contacted by water.

A/W can be replaced by the specific surface area, A_{sp} , which is a function of the degree of cracking. Hence, the CRF_{Source} is computed as:

$$CRF_{Source} = \frac{Q}{RA_{ev}Vf_{m}} \quad . \tag{5}$$

Since the PE was meant to provide conservative analysis, the forward dissolution rate at 20°C was used as the release rate. Any effects of crystallization and solution pH on the glass release rate were neglected. The forward dissolution rate for the borosilicate glass waste form was assumed to be 0.0001 g/m²-d at a loading of 30 wt% waste.

nuclide Cw ^a Path ^o Cw Path		_					JF /
	ath Cw	C _w Path	C _W P	Path Cw	Path	Cw	Path
Am-241 1E+03 2E+03	2E+0	E+03	1E+01				
Am-243			5E-01				
C-14 5E+02 2E+03 1E+04 I 4E+03	1E+0	E+03	6E+02	5E+0	3	1E+02	
Cf-249			6E+00				<u> </u>
Cf-250			2E+02				-
Cf-251			2E+00				
Ci-36 2E+02 I 2E+02 I 2E+02 I 2E+02 I 2E+02 I 2E+02 I	1 2E+0	E+02 I	2E+02	1 2E+0	2 1		
Cm-243			4E+02	3E+0	3		
Cm-244			2E+02	3E+0	3		+
Cm-245			3E-01		-		<u>+</u>
Cm-246			6E-01				<u> </u>
Cm-247	_		3E-01				+
Cm-248	_		1E-01			~	+
Cs-135 1E+03	3E+0	E+02		1E+0	3		
H-3 7E+07 I 7E+06 7E+07 I 7E+07 I 2E+07	8E+0	E+05	7E+05	5E+0	7		+
1-129 4E+01 4E+02 3E+00 8E+00 7E+01 3E+01	9E+0	E+00	5E+00	3E+0	1	8E-01	1
K-40 7E+02 I 4E+01 1E+02 7E+02 I 4E+02	1E+0	E+02	1E+02	6E+0	12		<u>†</u>
Nb-93m	_			1E+0	6		+
Nb-94			9E+01	T			+
Ni-59	1E+0	E+04		<u> </u>			<u>†</u>
Np-237 2E-01 3E-01 4E+00 2E+00	3E-0	E-01	4E-01	3E+0	00		1
Pa-231 6E-01				4E-0)1		+
Pd-107 2E+05 5E+04	1E+0	E+04	1E+04	7E+0)4		+
Pu-238	2E+0	E+04	1E+04	5E+0)4		+
Pu-239			5E-01	4E+0)4		\mathbf{T}
Pu-240			6E-01	7E+(0		
Pu-241 4E+05 4E+05			3E+02	2E+0	5 T		
Pu-242			5E-01	3E+0	00		1
Pu-244			3E-01	1E+0	0		-
Ra-226	2E+0	E+01					
Se-79 1E+03 1E+03 1E+03	3E+0	E+02	2E+02	1E+0	3		1
Si-32							
Sn-126	8E+0	E+01 I	6E+01				
Tc-99 7E+03 7E+03 2E+04 I 5E+02 6E+02 1E+04 5E+03 1E+03 1E+04 4E+03	2E+0	E+03	1E+03	7E+0	3	2E+02	2
Th-229			5E-01				+
Th-230			3E-01				
Th-232			4E-01				1
U-232 8E+01 3E+01 3E+01							1
U-233 4E+01 2E+01 3E+01	3E+0	E+00	2E+00	5E+0	00		1
U-234 4E+01 3E+01 3E+01	6E+0	E+00	5E+00	3E+0	01		1
U-235 4E+01 1E+01 3E+01	3E+0	E+00	1E+00	4E+0	00		1
U-236 4E+01 8E+01 4E+01	6E+0	E+00	6E+00	4E+0	01		1
U-238 4E+01 8E+01 3E+01	6E+0	E+00	6E+00	4E+0	01		1
Zr.93				4E+0	03		1

Table B-1 (a). Permissible Radionuclide Concentrations for Polyethylene Microencapsulated Waste - Trench Design

.

B-3

a Maximum permissible concentration in the waste; blank cells indicate that the values are the same as those in the PE (Waters and Gruebel, 1996)

b Controlling pathway is the same as in the PE (Waters and Gruebel, 1996) unless otherwise noted: I = intruder

Radio-	LLN	íL	Hanf	ord	INE	L	RFE	TS	SN	L	LAN	IL.	Pant	ex	ANL	.E	PGC	P	FEM	Р	POR	TS	OR	2	SR	S	WVI	DP
nuclide	Cwa	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path
H-3				1				Î															7E+07	I	2E+13			
C-14						1	1E+03								3E+03				9E+03		2E+03		2E+03		1E+04	I	3E+02	
Si-32																												1
CI-36		_	2E+02	1			2E+02	I									2E+02	I	2E+02	I	2E+02	1	2E+02	1	2E+02	I		
K-40					7E+02	I	1E+02					·····					7E+02	I	7E+02	1	2E+02		2E+02		7E+02	I		
Ni-59																												
Se-79			2E+03																				4E+02		2E+03			1
Zr-93										Γ															9E+03			1
Nb-93m				1																					3E+10			1
Nb-94																												
Tc-99	1E+04		1E+04		2E+04	I	1E+03		1E+03		2E+04	I	8E+03		3E+03		2E+04	I	1E+04		3E+03		2E+03		1E+04		3E+02	
Pd-107																			1E+05		3E+04		2E+04		1E+05			
Sn-126																							8E+01	1				
I-129	÷		8E+01		2E+02		7E+00								2E+01		2E+02		8E+01		2E+01		1E+01		7E+01		2E+00	
Cs-135			3E+03																									
Ra-226																												
Th-229																ļ							1E+00					
Th-230				ļ					·			· · ·					· · · · ·				·	<u> </u>	6E-01					
Th-232						ļ										ļ			·				7E-01					
Pa-231			1E+00	L	·		l			L															8E-01			L
U-232			2E+03			ļ										<u> </u>			3E+03									
U-233			8E+01	ļ	ļ	ļ	ļ			ļ	ļ	ļ	ļ	<u> </u>		ļ	2E+01	ļ	4E+01	ļ	3E+00		4E+00		8E+00			_
U-234		L	8E+01		<u> </u>		ļ			I		L				 	4E+01		5E+01		9E+00		1E+01		3E+01			
U-235			8E+01			ļ	ļ										1E+01		3E+01		2E+00		2E+00	——	5E+00		<u> </u>	—
0-236	<u> </u>	ļ	8E+01	 		 	ļ			 						┣──	26+02		5E+01		20+01		16+01		8E+01			
0-238			82+01			 	45.04								0E 01		15+01		3E+01	[205.01		65 04	—	12+01			—
Np-237	ļ					<u> </u>	40-01								95-01	 	12+01		46.700		9E-01		25+04		404		· · · · · · · · · · · · · · · · · · ·	+
Pu-238				╂───	ł		·			<u> </u>						╂───					35-104		15+00		02704			
Pu 240	<u> </u>	[[f	[f	[f		f				f		1					15+00					+
Pu-240																		łi					65+02					+
Pu-241					<u> </u>														···-				1E+00					 -
Pu-244	í — — —			<u> </u>	1	<u> </u>		1		(1						I	6E-01					f
Am-241		┝				+		<u> </u>															3F+01					<u>+</u>
Am-243			1	-	l																		1E+00					<u> </u>
Cm-243				1	l	t																	6E+02					<u> </u>
Cm-244			 				1									<u>† – – – – – – – – – – – – – – – – – – –</u>							4E+02					1
Cm-245	t						1									<u> </u>	-	1					5E-01					
Cm-246					1											—							1E+00					1
Cm-247							1									1			···-				6E-01					1
Cm-248		<u> </u>			<u> </u>	1	1									<u> </u>		<u> </u>					2E-01					1
Cf-249				t	1	<u> </u>										1							1E+01					<u> </u>
Cf-250							1									<u> </u>							5E+02					1
Cf-251																							4E+00					

Table B-1 (b). Permissible Radionuclide Concentrations for Polyethylene Microencapsulated Waste - Tumulus Design

a Maximum permissible concentration in the waste; blank cells indicate that the values are the same as those in the PE (Waters and Gruebel, 1996)

b Controlling pathway is the same as in the PE (Waters and Gruebel, 1996) unless otherwise noted: I = intruder

B-4

Radio-	LLN	۱L	Hanf	ord	INE	L	RFE	TS	SN	Ĺ	LAN	IL I	Pant	ex	ANL	E	PG)P	FEM	Р	POR	TS	OR	R	SR	5	WV/	P
nuclide	Cw [®]	Path	Cw	Path																								
Am-241							1E+03								2E+03						2E+03		1E+01			_		-
Am-243																							5E-01					
C-14							5E+02								2E+03		1E+04	I	4E+03		1E+03		6E+02		5E+03		1E+02	
Cf-249																							6E+00				12.02	
Cf-250																							2E+02					
Cf-251																							2E+00					
CI-36			2E+02	1			2E+02	1							2E+02	ī	2E+02	I	2E+02	I	2E+02	I	2E+02	I	2E+02	T		<u> </u>
Cm-243																							4E+02		3E+03			<u> </u>
Cm-244																							2E+02		3E+03			
Cm-245																							3E-01					
Cm-246																							6E-01					
Cm-247																							3E-01					
Cm-248																							1E-01					
Cs-135			1E+03																		3E+02				1E+03			
H-3			7E+07	1			7E+07	Ι							7E+07	1	7E+07	I	7E+07	I	7E+07	I	7E+07	1	1E+10			
I-129			4E+01		4E+02		3E+00								8E+00		7E+01		3E+01		9E+00		5E+00		3E+01		8E-01	
K-40					7E+02	Ι	4E+01								1E+02		7E+02	Ι	4E+02		1E+02		1E+02		6E+02			t
Nb-93m																									9E+07			
Nb-94																							9E-01	1				
Ni-59																					1E+04							
Np-237							2E-01								3E-01		4E+00		2E+00		3E-01		4E-01		3E+00			
Pa-231			6E-01																						4E-01			—
Pd-107																	2E+05		5E+04		1E+04		1E+04		7E+04			
Pu-238																					2E+04		1E+04		5E+04			T
Pu-239																							5E-01		4E+04			-
Pu-240																							6E-01		7E+00			
Pu-241							4E+04								4E+05								3E+02		2E+05	Ι		1
Pu-242																							5E-01		3E+00			
Pu-244																							3E-01		1E+00			
Ra-226																					2E+01							
Se-79			1E+03																1E+03		3E+02		2E+02		1E+03			
Si-32																												
Sn-126																					8E+01	I	6E+01					
Tc-99	7E+03		7E+03		2E+04	I	5E+02	· ·	6E+02		1E+04		5E+03		1E+03		1E+04		4E+03		2E+03		1E+03		7E+03		2E+02	
Th-229																							5E-01					
Th-230																							3E-01					
Th-232																							4E-01					
U-232			8E+01																7E+01									
U-233			4E+01														2E+01		3E+01		3E+00	•	2E+00		5E+00			
U-234			4E+01														4E+01		3E+01		6E+00		5E+00		3E+01			
U-235			4E+01														1E+01		3E+01		3E+00		1E+00		4E+00			
U-236			4E+01														8E+01		4E+01		6E+00		6E+00		4E+01			
U-238			4E+01														8E+01		3E+01		6E+00		6E+00		4E+01			T
Zr-93																									4E+03			

Table B-2 (a). Permissible Radionuclide Concentrations for Polyethylene Macroencapsulated Waste - Trench Design

B-5

a Maximum permissible concentration in the waste; blank cells indicate that the values are the same as those in the PE (Waters and Gruebel, 1996)

b Controlling pathway is the same as in the PE (Waters and Gruebel, 1996) unless otherwise noted: I = intruder

Radio-	LLN	L	Hanf	ord	INE	L	RFE	тѕ	SN	íL	LAN	11.	Pan	ex	ÂN	.E	PG	OP	FEN	1P	POR	TS	OR	R	SR	s	WV	DP
nuclide	Cw	ath	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path
H-3					1	1			Î.	1]	Î —	1	1	1			1		Í			7E+07	1	4E+15			<u> </u>
C-14				1		<u>t</u>	1E+03				1				3E+03			+	9E+03		2E+03		2E+03		1E+04	T I	3E+02	
Si-32				1		1		1					1							<u> </u>								<u>t</u>
CI-36			2E+02	I		\mathbf{t}^{-}	2E+02	I		1							2E+02	I	2E+02	I	2E+02	I	2E+02	I	2E+02	ī		
K-40					7E+02	I	1E+02				1						7E+02	I	7E+02	I	2E+02		2E+02		7E+02	I		t
Ni-59				1	1		1				j	†																1
Se-79			2E+03			1				1		t	1		1			1					4E+02	2	2E+03			<u>†</u>
Zr-93				1								t—						\mathbf{t}		t				-	9E+03			t
Nb-93m							1	<u> </u>		1	1	t	1	1					·		1			1	2E+12			+
Nb-94				1									1			1		1										t
Tc-99	1E+04		1E+04		2E+04	I	1E+03		1E+03		2E+04	ī	8E+03		3E+03	5	2E+04	I	1E+04		3E+03	<u> </u>	2E+03		1E+04		3E+02	<u></u>
Pd-107						1				1									1E+05		3E+04		2E+04		1E+05			
Sn-126	1				1		1		1			I —					1						8E+01	I				1
1-129			8E+01	1	2E+02	!	7E+00			1		1			2E+01		2E+02		8E+01	1	2E+01		1E+01		7E+01		2E+00	<u>ال</u>
Cs-135			3E+03			Γ												T				<u> </u>						1
Ra-226					I							Γ								1				1				T
Th-229						Γ	1		1			1						Т	[Ι			1E+00					T
Th-230																							6E-01					1
Th-232																							7E-01					
Pa-231			1E+00						·																8E-01			
U-232	I		2E+03							I									7E+03									
U-233			8E+01														2E+01		4E+01		3E+00		4E+00		8E+00			
U-234			8E+01														4E+01		5E+01		9E+00		1E+01		3E+01			
U-235			8E+01														1E+01		3E+01		2E+00		2E+00		5E+00			
U-236			8E+01														2E+02	2	5E+01		2E+01		1E+01		8E+01			
U-238			8E+01														2E+02		5E+01		2E+01		1E+01		7E+01			
Np-237							4E-01								9E-01		1E+01		4E+00		9E-01		6E-01		4E+00			
Pu-238																					3E+04		3E+04		8E+04			
Pu-239																							1E+00					
Pu-240																							1E+00					
Pu-241																							6E+02	2				
Pu-242													1							1			1E+00					
Pu-244																							6E-01	1				1
Am-241																						<u> </u>	3E+01					
Am-243																							1E+00					
Cm-243																							6E+02					
Cm-244																							4E+02					
Cm-245																							5E-01					
Cm-246																							1E+00					
Cm-247																1							6E-01					
Cm-248																							2E-01					
Cf-249																							1E+01					
Cf-250																							5E+02					
Cf-251																				1			4E+00					

Table B-2 (b). Permissible Radionuclide Concentrations for Polyethylene Macroencapsulated Waste - Tumulus Design

a Maximum permissible concentration in the waste; blank cells indicate that the values are the same as those in the PE (Waters and Gruebel, 1996)

b Controlling pathway is the same as in the PE (Waters and Gruebel, 1996) unless otherwise noted: I = intruder

Radio-	LLNL		Hanford		INEL		RFETS		SNL		LANL		Pantex		ANLE		PGDP		FEMP		PORTS		ORR		SRS		WVDP	
nuclide	Cw	ath	Cw	Path	Cw	Path	Cw	Path	Cw	Path	C _W	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cu	Path
Am-241			1				7E+03	I			1		1	1	7E+03	T							5E+02				~~~	
Am-243																							2E+01				/	
C-14							1E+04	1					1		1E+04	I	1E+04	I	1E+04	ī	1E+04		1E+04	ī	1E+04	1	6F+03	-
Cf-249																							3E+02	<u> </u>		\vdash	02.00	<u> </u>
Cf-250		1																					1E+04			-1	·	-
Cf-251				[]																			8E+01			-1	i	
CI-36	ļ				·																					-1		<u> </u> '
Cm-243				 '	′			'															2E+04		1E+05			—
Cm-244	-			<u> </u>	·'	'																	1E+04		1E+05	-	·	
Cm-245				'	 '	\vdash																	1E+01			-	·'	
Cm-246					'	\vdash		\downarrow															3E+01			-	·	
Cm-24/	L		 '	↓ '	 '	\vdash	 '	\vdash															1E+01			\square	[·	
Cm-248		<u> </u>	05.00	\vdash	 /	\vdash	 '	\vdash	!														5E+00					
CS-135		 	62+04	\vdash	↓ ′	\vdash	 '	\square	'				ļ								1E+04				6E+04			
H-3	NP ^c		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP	
I-129	NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP	!	NP	-
K-40				Ĩ'	7E+02	1	7E+02	1							7E+02	Ι	7E+02	I	7E+02	I	7E+02	ī	7E+02	I	7E+02		<u> </u>	
Nb-93m																								<u> </u>	6E+07			
Nb-94				L'	······	L	· · · · · · · · · · · · · · · · · · ·																9E+01	I				
Ni-59				<u> </u>	L'		· · · · · · · · · · · · · · · · · · ·														5E+05						'	
Np-237				\square	L'	\square	7E+00	\square			[]				1E+01		2E+02		8E+01		2E+01		2E+01		1E+02	\square		
Pa-231		ļ	2E+01	\square	 '	\square	 '			·															2E+01	\square		
Pd-107				\vdash		\vdash	 '	\square									6E+06	I	2E+06		6E+05		5E+05		3E+06		,	
Pu-238]	└── ′	\square		\square													7E+04	I	7E+04	1	7E+04	I	, , , , , , , , , , , , , , , , ,	
Pu-239			[]	 		 	└── ┘	\vdash															2E+01		2E+02		\square	
Pu-240				\vdash		\vdash	25.05	+					· · · · ·										3E+01		3E+02			
Pu-241 Di 242			├ ────┤	 			20+05	\vdash					· · · · · · · · · · · · · · · · · · ·		2E+05								1E+04		2E+05		\Box	
Pu-244							↓ −−−−−↓	├				·			L	II							2E+01		1E+02		/	
Ra-226				إستنز												\square							1E+01		6E+01		ļ	
Sa-79			6E+04			\vdash		 								 			77.04		8E+01					<u> </u>	<u> </u>	
Si-32			02.04		├ ───┤	├──┦		├ ── 											6E+04		1E+04	L	9E+03		5E+04		ļ	
Sn-126			+		├ ──┤	 										 					07.04			L		—]	'	
Tc-99	2E+04		2E+04		2E+04		2E+04		25+04		2E+04		25+04		25.04	-	25.04		25.04		8E+01	L-	8E+01					┣
Th-229				<u>ا</u> نم		\vdash	20.004	<u> </u>	26104		20104		26704		20704		20+04		212+04		26+04		2E+04		2E+04		2E+02	
Th-230			+		├ ───┤	H									II	 		 	i			 	2E+01			-	/	
Th-232			i+	-1	├ ──┤											├							1E+01			 	h'	
U-232			1E+03	-1	├ ──┥	—		—								 			15.02				2E+01			—	'	┣—
U-233		(1	7E+02	T				-+				_			I	 	75402		12+03		75.00	——	25.04		25.00	 	J'	l
U-234			1E+03	$\dot{-}$	+	i	+								I		15+02	÷	15+02		76+02	h	82+01		20+02	⊢	/	<u> </u>
U-235			6E+02	<u>i</u>				-+					l				1E+03		1E+03	÷	3E+02		20+02		12+03	L-H	ļ	—
U-236			1E+03			-+									 		35+02		45+02		20+02		5E+01	—	2E+02	 	J]	
U-238			1E+03		t	-+											36+03		15+03		35+02		30+02		26+03			<u> </u>
Zr-93					+	-+	+	-+									JE YUS		12+03		JETUZ		JE+UZ		26+05	<u> </u>	لـــــــــــــــــــــــــــــــــــــ	
		in succession in the local division of the l	in the second	and the second	And the second se	(and the second s		_		<u> </u>						(I	í I	1			i 1		1 1	(P	25+031		, ,	4 7

Table B-3 (a). Permissible Radionuclide Concentrations for Waste in Glass - Trench Design

a Maximum permissible concentration in the waste; blank cells indicate that the values are the same as those in the PE (Waters and Gruebel, 1996)

b Controlling pathway is the same as in the PE (Waters and Gruebel, 1996) unless otherwise noted: I = intruder

c Not Present: volatile radionuclide that would not be present in this waste form

T.	
Ó0	

.

Table B-3 (b). Permissible Radionuclide Concentrations for Waste in Glass - Tumulus Design

Radio-	io- LLNL		Hanf	ord	INEL		RFETS		SNL		LANL		Pantex		ANLE		PGDP		FEMP		PORTS		ORR		SRS		WV	DP
nuclide	C _w ^a	Path ^b	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path	Cw	Path
H-3	NP ^c		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP	
C-14							1E+04	1							1E+04	I		1	1E+04	I	1E+04	I	1E+04	T	1E+04	ī	1E+04	T
Si-32											1			T		1				<u> </u>				<u> </u>		<u> </u>		<u> </u>
CI-36												—								<u> </u>								<u> </u>
K-40					7E+02	1	7E+02	Ι			1			· · · ·			7E+02	I	7E+02	1	7E+02	ī	7E+02	I	7E+02	ī		
Ni-59																		1										<u> </u>
Se-79			1E+05															1					2E+04		1E+05			
Zr-93																	1								4E+05			<u> </u>
Nb-93m																14									1E+12			<u> </u>
Nb-94																							·····					
Tc-99	2E+04	I	2E+04	Ι	2E+04	I	2E+04	I	2E+04	I	2E+04	I	2E+04	I	2E+04	1	2E+04	I	2E+04	I	2E+04	1	2E+04	1	2E+04	1	3E+02	
Pd-107																			4E+06		1E+06		1E+06		6E+06	I		
Sn-126				<u> </u>																			8E+01	1	······			
1-129	NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP		NP	
Cs-135	L		1E+05																									
Ra-226				I	<u> </u>																							
Th-229																							5E+01					
Th-230																							3E+01					
Th-232				L		L					<u> </u>		l										3E+01					
Pa-231			4E+01		ļ							L													3E+01			
U-232			1E+04					لنسل											1E+04	I								
U-233			7E+02		[L				7E+02	1	7E+02	1	1E+02		2E+02		3E+02			
U-234			1E+03	I									ļ			· · · ·	1E+03	1	1E+03	Ι	5E+02		5E+02		1E+03	1		
U-235			6E+02			<u>↓</u>											5E+02		6E+02	1	9E+01		1E+02		2E+02			
0-236	[42+03										L				7E+03		2E+03		8E+02		5E+02		3E+03			
0-238			4E+03				45.04	\square									5E+03	1	2E+03		8E+02		5E+02		3E+03			
Np-237	ļ				ļ		12+01								4E+01		4E+02	<u> </u>	2E+02		6E+01		3E+01		2E+02			
PU-238						┝──┥							· · · ·								1E+05		1E+05	<u>I.</u> ,	4E+05	1.		
PU-239						-												L					5E+01				L	ļ
Pu-240						├ ──┤											L						5E+01					
Du 242																		ļ		·			3E+04					
Du 244	{{			i		<u> </u>		—	f									 					5E+01					
Am 241																							3E+01			·		ļ
Am 243																							12+03					<u> </u>
Cm 243																							5E+01					
Cm-244																							3E+04					<u> </u>
Cm 245								— -1										 					26+04					<u> </u>
Cm 246																							20+01			·		
Cm-247							{																0E+01					_
Cm 248																							20+01					
Cf.240	{{																						16+01					
Cf 250	{{					·	├ ──┤																3C+02					
CL251						—																	20+04					
01-201							L																26+02					1

a Maximum permissible concentration in the waste; blank cells indicate that the values are the same as those in the PE (Waters and Gruebel, 1996)

b Controlling pathway is the same as in the PE (Waters and Gruebel, 1996) unless otherwise noted: I = intruder

.

c Not Present; volatile radionuclide that would not be present in this waste form
References

- Cunnane, J.C., and J.M. Allison, 1994. "High-Level Waste Glass Compendium; What It Tells Us Concerning the Durability of Borosilicate Waste Glass," Scientific Basis for Nuclear Waste Management XVII, MRS Vol. 333, p. 87-93.
- DOE (Department of Energy), 1996. Performance Evaluation of the Technical Capabilities of DOE Sites for Disposal of Mixed Low-Level Waste. DOE/ID-10521. 3 vol. Idaho Falls, ID: U.S. Department of Energy, Office of Waste Management (EM-30).
- SNL, 1996. "Waste Performance Assessment Task, Draft Letter Report." Albuquerque, NM: Sandia National Laboratories.
- Waters, R.D., and M.M. Gruebel, eds., 1996. "Performance Evaluation of the Technical Capabilities of DOE Sites for Disposal of Mixed Low-Level Waste - Vol. 3: Site Evaluations," DOE/ID-10521/3, SAND96-0721/3. Prepared by Sandia National Laboratories for the U.S. Department of Energy, March, 1996.

Intentionally left blank

Appendix C:

SUMMARY OF DATA USED IN THE CALCULATION OF TREATED VOLUMES OF MLLW

This appendix contains the basic data used in and results of the volume estimates for treated mixed low-level waste (MLLW). All values in this table have been reviewed and updated, when necessary, by the site contacts. Each row in the table represents a waste stream that results in MLLW after treatment. Waste streams that result in LLW or TRU waste after treatment are not listed.

The last column of this table, Treated MLLW Volume (m^3) , is the result of the following calculation:

Treated MLLW Volume = $(MWIR \ Current + 5 - yr \ Volume) \times AMR \times \frac{Inital \ Bulk \ Density}{Final \ Bulk \ Density}$

AMR is the <u>activity-per-unit-mass</u> <u>ratio</u> (initial values are given in Table 2-3 of the report, which were modified for some waste streams at some sites), which represents the change in mass due to treatment of the waste. The summation of the last column in this table equals the total estimated volume of 130,300 m³ for treated MLLW that will be disposed of as MLLW.

C-1

Intentionally left blank

	MWIR	MWIR				Activity-	Initial	Final	Treated
	Current	5-Yr			Matrix	Per-Unit-	Bulk	Bulk	MLLW
MWR	Volume	Projected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m³)	Volume (m ³)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm ³)	(g/cm ³)	(m³)
Argonne Eas	st 	0.4040							
AE-WU15	1.07	0.1216	Lab Packs, Chemical Oxidation	polymer	X6100	100	1	1	119
AE-W023	0.26	1.448	Debris, Stabilization	grout	S5121	2	1.6	2.4	2
AE-W026	3.5	1.6	Elemental cadmium, Macroencapsulation	macroencapsulation	X7220	2	5	5	10
AE-W033	12.2	57.392	Lead, Macroencapsulation	macroencapsulation	X7212	0.5	11	11	35
AE-W035	11.1	0	Lead, Macroencapsulation	macroencapsulation	X7219	0.5	11	11	6
AE-W044	0.2	0	Elemental mercury, Amalgamation	amalgam	X7100	2	10.9	10	0.4
Argonne We	et								
AW-W009	0.63	0	Debris, Thermal	grout	S3130	0.05	1.6	2.4	0.02
Batelle Colur	nbus	4 464							
BC-WUUZ	<u> </u>	1.151	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.04
Brookhaven									
BN-W004	0.91	0.1	Combustible Organics, Thermal	arout	L2900	0.01	0.9	2.4	0.004
Bettis									
BT-W007	0.42	0	Combustible Organics, Thermal	grout	S3219	0.01	1	2.4	0.002
BT-W009	0.63	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S4100	2	1.6	2.4	0.8
BT-W010	0.48	0	Combustible Organics, Incineration/Thermal	grout	L2220	0.01	0.9	2.4	0.002
BT-W013	0.84	0	Inorganic Homogeneous Solids and Soils, Incineration/Thermal	grout	S4100	2	1.6	2.4	1
BT-W018	0	0.02	Combustible Organics, Thermal	grout	L2190	0.01	1	2.4	0.0001
BT-W020	0	0.05	Debris, Macroencapsulation	macroencapsulation	S5112	1	5.7	5.7	0.1
BT-W028	2.1	0.63	Wastewater, Incineration/Thermal	grout	L1130	0.01	1	2.4	0.01
BT-W029	0.84	0.63	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.01
BT-W031	2.73	1.05	Combustible Organics, Incineration/Thermal	grout	S3223	0.01	1.2	2.4	0.02
Charleston)	Percel								
CNLM005	0 00003	0	Datain Massangangulatian		05110				0.00002
CN-W006	0.00000	0	Debris, Macroencapsulation	macroencapsulation	S5119		4	4	0.00003
011-11000	0.0			macrocilcapsulation	33119	┝━━┷┥			0.8
ORR K-25 Si	te								
DP-W002	82.747	3.935	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3100	2	1.3	2.4	94
DP-W007	140.955	171.16	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3100	2	2.4	2.4	624
DP-W011	16455.43	0	Stabilized Pond Sludge, Stabilization	grout	S3100	1	2.4	2.4	16455
DP-W019	10733.63	0	Unstabilized Pond Słudge, Stabilization	grout	S3100	2	2.4	2.4	21467
DP-W027	188.642	95.45	Wastewater, Thermal Treatment	grout	L1000	0.001	1.1	2.4	0.1

· ·

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m ³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm ³)	Final Bulk Density (g/cm ³)	Treated MLLW Volume (m ³)
DP-W030	31,787	21.645	Wastewater, Thermal Treatment	arout	L1000	0.001	1.1	2.4	0.02
DP-W034	33	14.585	Combustible Organics. Thermal	arout	L2000	0.01	0.9	2.4	0.2
DP-W140	436,415	420	Inorganic Homogeneous Solids and Soils, Stabilization	arout	\$3100	2	1.3	2.4	928
DP-W141	290.045	0	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	145
DP-W143	38.021	0	Combustible Organics. Thermal	grout	L2000	0.01	0.9	2.4	0.1
DP-W144	60.822	0.285	TSCA Residues. Stabilization	grout	S5100	2	2.4	2.4	122
DP-W146	271.978	0	Combustible Organics. Thermal	grout	S3200	0.01	1.2	2.4	1
DP-W147	196,137	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4000	2	1.5	2.4	245
DP-W148	164.072	0	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	82
DP-W149	123 599	11 285	Wastewater, Thermal Treatment	arout	L1000	0.001	1.1	2.4	0.1
DP-W150	95.026	40,205	Wastewater, Thermal Treatment	arout	L1000	0.001	1.1	2.4	0.1
DP-W151	3 135	0.44	Wastewater Thermal Treatment	arout	L1000	0.001	1.1	24	0.002
DP-W152	234 935	100 455	Combustible Organics. Thermal	arout	L2000	0.01	0.9	2.4	1
DP-W153	21 115	0.875	Combustible Organics, Thermal	arout	L2000	0.01	0.9	2.4	0.1
DP-W154	21 056	1 635	Combustible Organics, Thermal	arout	L2000	0.01	0.9	2.4	0.1
DP-W155	3.398	0	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	2
DP-W156	112.041	4,855	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	58
DP-W157	84.537	74.18	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	79
DP-W158	36,183	0.315	Combustible Organics. Thermal	grout	S3200	0.01	1.2	2.4	0.2
DP-W160	21.905	1.915	Combustible Organics, Thermal	grout	S3200	0.01	1.2	2.4	0.1
DP-W161	27.117	0.3	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4000	2	1.5	2.4	34
DP-W162	24.286	48.83	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4000	2	1.5	2.4	91
DP-W163A	24.094	0.235	Inorganic Homogeneous Solids and Solls, Stabilization	grout	S4000	2	1.5	2.4	30
DP-W166	2.91	0,195	Debris D018-D043, Stabilization	grout	S5100	2	2.4	2.4	6
DP-W170	18,48	41.225	Debris D018-D043, Stabilization	grout	S5400	2	2.4	2.4	119
Energy Tech				·					
ET-W020	0.15	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
Fernald									
FM-W005	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W009	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W013	0.8	0	Combustible Organics, Non-Thermal	grout	\$3222	2	1.2	2.4	0.8
FM-W014	0.6	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W019	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W023	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W025	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W027	0.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W030	12	1	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.1
FM-W031	1.8	0.2	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.01

•

MWIR	MWIR Current Volume	MWIR 5-Yr Projected		Primary	Matrix Parameter	Activity- Per-Unit- Mass	Initial Bulk Density	Final Bulk Density	Treated MLLW Volume
Survey ID	(m°)	Volume (m [*])	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm³)	(g/cm ³)	(m³)
FM-VVU32	2	0.1	Combustible Organics, Thermal	grout	L2120	0.01		2.4	0.01
FM-VVU3D	8.2	0,9	Combustible Organics, Inernal	grout	L2120	0.01	1	2.4	0.04
FIN-VVU30	44.4	3.2	Compusible Organics, Inernal	grout	L2220	0.01	0.9	2.4	0.2
	0.2	0	Compusible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
FIN-VVU41	0.2	0	Combustible Organics, Therman	grout	L2220	0.01	0.9	2.4	0.001
	0.4	0	Compusible Organics, Non-Inermal	grout	\$3222	2	1.2	2.4	0.4
FM-VV040	0.2	0	Compusible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-VV047	0.2	0	Combustible Organics, Non-Thermal	grout	\$3222	2	1.2	2.4	0.2
FM-VV050	0.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-VV051	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-VV054	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0,001
FM-VV055	1.4	0	Compusible Organics, Thermal	grout	\$3222	0.01	1.2	2.4	0.01
FM-VV08	1.4	0	Compusible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.01
FM-77009	0.2	0	Compusible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
FM-W075	2.0	0	Compusible Organics, Inermal	grout	L2220	0.01	0.9	2.4	0.01
FM-VV076	0.2	0		grout	L2220	0.01	0.9	2.4	0.001
FM-VV080	0,2	U	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.3
FM-W085	0.2	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.3
FM-W088	0.2	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.3
FM-W089	0.4	0.5	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.003
FM-W091	0.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	1
FM-W093	0.2	0	Combustible Organics, Non-Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-W094	1.2	0 .	Wastewater, Non-Thermal	grout	L1130	0.01	1	2.4	0.01
FM-W102	0.2	0	Debris, Non-Thermal	grout	S5112	2	5.7	2.4	1
FM-W104	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-W107	1.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.005
FM-W114	2.2	3	Wastewater, Non-Thermal	grout	L1130	0.01	1	2.4	0.02
FM-W115	2.6	0	Wastewater, Non-Thermal	grout	L1110	0.25	1	2.4	0.3
FM-W117	0.4	6.3	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.03
FM-W119	3.4	7.5	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.04
FM-W121	1.2	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	2
FM-W122	0.2	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.3
FM-W123	4.8	15.4	Debris, Stabilization	grout	\$5112	2	5.7	2.4	96
FM-W124	1.2	0.3	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.01
FM-W125	4.8	0	Debris, Stabilization	grout	\$5490	2	0.6	2.4	2
FM-W126	2.8	0	Combustible Organics, Non-Thermal	grout	\$3222	0.01	1.2	2.4	0.01
FM-W127	4.4	0	Compustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.02
FM-W129	0.2	0	Compusible Organics, Thermai	grout	L2220	0.01	0.9	2.4	0.001
FM-W130	0,6	0	Compussible Organics, Non-Thermal	grout	\$3222	0.01	1.2	2.4	0.003
FM-W131	0,4	0	Compusible Organics, Non-Thermal	grout	S3223	0.01	1.2	2.4	0.002

	MWIR Current	MWIR 5-Yr			Matrix	Activity- Per-Unit-	Initial Bulk	Final Bulk	Treated MLLW
MWIR	Volume	Projected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m³)	Volume (m ³)	Waste Type, Process Flow	Waste Form	Catedory	Ratio	(a/cm ³)	(a/cm^3)	(m ³)
FM-W132	105.8	0	Combustible Organics, Non-Thermal	arout	L2120	0.01	1	24	0.4
FM-W137	1.2	0	Combustible Organics, Non-Thermal	grout	S3222	2	1.2	24	1
FM-W140	0.4	0	Combustible Organics, Non-Thermal	arout	S3222	2	1.2	2.4	0.4
FM-W144	4.4	0	Debris, Stabilization	grout	S5123	2	1.6	2.4	6
FM-W145	7.8	0	Combustible Organics, Non-Thermal	arout	S3222	2	1.2	2.4	8
FM-W146	2.8	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.01
FM-W147	2	0	Combustible Organics, Non-Thermal	grout	\$3223	0.01	1.2	2.4	0.01
FM-W148	1.6	0	Combustible Organics, Thermal	grout	S3222	0.01	1.2	2.4	0.01
FM-W149	0.6	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W150	0.6	0	Combustible Organics, Non-Thermal	grout	S3223	2	1.2	2.4	0.6
FM-W151	0.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W152	0.2	0	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.01
FM-W153	0.2	0	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.01
FM-W154	56	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.2
FM-W158	3	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
FM-W161	2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.01
FM-W162	1.8	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
FM-W165	0.8	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	1.2	2.4	0.8
FM-W166	0.6	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3190	2	1.5	2.4	0.8
FM-W167	0.4	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.002
FM-W168	0.4	0	Combustible Organics, Non-Thermal	grout	L2210	0.01	0.9	2.4	0.002
FM-W171	0.2	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	1.2	2.4	0.2
FM-W172	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W173	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-W181	0.2	0	Combustible Organics, Non-Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W185	15.8	0	Combustible Organics, Non-Thermal	grout	S3222	2	1.2	2.4	16
FM-W187	10.6	0	Combustible Organics, Non-Thermal	grout	S3222	2	1.2	2.4	11
FM-W188	4.2	0	Combustible Organics, Non-Thermal	grout	S3223	2	1.2	2.4	4
FM-W191	3.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.01
FM-W192	17	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.1
FM-W194	0.8	0	Combustible Organics, Non-Thermal	grout	S3223	2	1.2	2.4	0.8
FM-W196	0.8	0	Combustible Organics, Non-Thermal	arout	\$3222	2	12	24	0.8
FM-W197	0.6	0	Combustible Organics. Thermal	grout	\$3223	0.01	12	24	0.003
FM-W198	2	0	Combustible Organics, Non-Thermal	arout	\$3223	2	1.2	2.4	2
FM-W215	31	0	Inorganic Homogeneous Solids and Soils, Stabilization	arout	S3129	2	1.3	2.4	34
FM-W216	0.2	0	Combustible Organics, Thermal	arout	L2220	0.01	0.9	2.4	0.001
FM-W217	1	0	Debris, Thermal	grout	\$5330	0.05	0.6	2.4	0.01
FM-W218	0.2	0	Combustible Organics, Thermal	arout	L2120	0.01	1	2.4	0.001
FM-W221	1.8	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3111	2	1.2	2.4	2

.

									-
	MIVVIR Current					Activity-	Initial	Final	Treated
	Current	17-C			Matrix	Per-Unit-	Bulk	Bulk	MLLW
MWIR	volume	Projected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m²)	Volume (m°)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm ³)	(g/cm ³)	(m³)
FM-W224	1.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3149	2	1.4	2.4	2
FM-W225	13.4	0	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.1
FM-W226	0.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3129	2	1.3	2.4	0.4
FM-W227	0.6	0	Combustible Organics, Thermal	grout	S3222	0.01	1.2	2.4	0.003
FM-W229	0.2	0	Combustible Organics, Non-Thermal	grout	S3229	2	1.2	2.4	0.2
FM-W233	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-W234	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-W240	7.6	. 0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3144	2	1.4	2.4	9
FM-W241	1	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3144	2	1.4	2.4	1
FM-W243	8.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3144	2	1.4	2.4	10
FM-W244	32.6	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3190	2	1.5	2.4	41
FM-W247	0.8	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3149	2	1.4	2.4	0.9
FM-W250	1	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3149	2	1.4	2.4	1
FM-W253	0.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	arout	S3119	2	1.2	2.4	0.4
FM-W258	0.2	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3190	2	1.5	2.4	0.3
FM-W262	2.2	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3129	0.01	1.3	2.4	0.01
FM-W264	0.2	0	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.001
FM-W267	3.2	0	Combustible Organics, Thermal	grout	\$3223	0.01	1.2	2.4	0.02
FM-W277	0.6	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.003
FM-W278	2.6	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
FM-W279	3.2	0	Combustible Organics, Non-Thermal	grout	S3223	0.01	1.2	2.4	0.02
FM-W280	0.2	0	Wastewater, Thermal	grout	L1130	0.01	1	2.4	0.001
FM-W282	69.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3144	2	1.4	2.4	81
FM-W283	4.2	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.02
FM-W284	0.2	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.3
FM-W285	2.4	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.01
FM-W288	0.4	0	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.002
FM-W289	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W297	0.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W301	0.2	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
FM-W306	0.2	0.2	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W308	2.4	16.8	Wastewater, Thermal Treatment	grout	L1110	0.01	1	2.4	0.1
FM-W309	0.4	0.2	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.002
FM-W312	1.8	4.8	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.02
FM-W313	1.8	6.9	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.03
FM-W316	0.4	0.9	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.005
FM-W318	0.8	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3150	2	1.8	2.4	1
FM-W323	0.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W324	0.2	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.001
FM-W327	0.8	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.003

Page C-7

	MWIR Current	MWIR 5-Yr Brojected			Matrix	Activity- Per-Unit-	initial Bulk Demoitu	Final Bulk	Treated MLLW
MWIR	40iuiie (3)	Fiojected	Minda Tara Davana Tira	Primary	Parameter	Mass	Density	Density	volume
Survey ID	(m°)	Volume (m*)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm*)	(g/cm°)	(m³)
FM-W328	2	9.5	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.05
FM-W330	0.2	0.9	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.005
FM-W332	0.2	1	Wastewater, Non-Thermal	grout	L1110	0.25	1	2.4	0.1
FM-W333	1.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.01
FM-W335	0.4	2	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.01
FM-W341	0.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3144	2	1.4	2.4	0.5
FM-W346	0.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W351	4	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.02
FM-W352	0.6	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.002
FM-W353	1.6	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
FM-W354	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W355	0.8	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.003
FM-W356	0.8	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.003
FM-W357	10.6	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.04
FM-W358	2.4	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
FM-W365	0,4	0	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.002
FM-W369	3.8	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3121	2	1.3	2.4	4
FM-W370	0.2	0	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.001
FM-W375	0.4	0	Debris, Non-Thermal	grout	S5112	2	5.7	2.4	2
FM-W378	0.2	0.6	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.003
FM-W379	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W380	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
FM-W383	2.4	0	Wastewater, Thermal Treatment	grout	L1130	0.001	1	2.4	0.001
FM-W384	0.6	0	Wastewater, Thermal Treatment	grout	L1130	0.001	1	2.4	0.0003
FM-W385	4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.02
FM-W388	0.8	0	Combustible Organics, Thermal	grout	S3223	0.01	1.2	2.4	0.004
FM-W394	0.4	0	Wastewater, Thermal Treatment	grout	L1130	0.001	1	2.4	0.0002
FM-W400	17	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.1
FM-W401	0.2	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
FM-W402	0.6	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
FM-W403	0.2	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
FM-W404	0.4	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.002
FM-W405	0.8	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.003
FM-W406	0.8	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.003
FM-W407	0.4	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.002
FM-W408	0.2	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.001
FM-W409	0.2	Ö	Combustible Organics, Thermal	grout	S3222	0.01	1.2	2.4	0.001
FM-W410	12	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.05
FM-W412	10.4	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.04
FM-W418	0.1	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S4200	2	1.6	2.4	0.1

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m ³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm ³)	Final Bulk Density (g/cm ³)	Treated MLLW Volume (m ³)
INEL									
IN-W005	0.21	0.0095	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.01
IN-W007	0.21	0	Lab Packs, Thermal Oxidation	polymer	X6200	0.05	1	1.4	0.01
IN-W008	0.21	0	Debris, Thermal	grout	S3000	0.05	1.3	2.4	0.0057
IN-W014	0.21	0	Debris, Stabilization	grout	S5113	2	4.4	2.4	1
IN-W035	1.87	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3122	2	1.3	2.4	2
IN-W038	5.89	0	Wastewater, Thermal Treatment	grout	L1290	0.01	1.1	2.4	0.03
IN-W047	0.21	0	Debris, Thermal	grout	\$5300	0.05	0.7	2.4	0.0031
IN-W050	0.21	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
IN-W057	0.08	0	Debris, Thermal	grout	S5440	0.05	0.7	2.4	0.0012
IN-W058A	2.1675	0	Debris, Stabilization	grout	S5110	1	4	2.4	4
IN-W061	0.04	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.000
IN-W062	0.13	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.001
IN-W077	0.03	0	Debris, Stabilization	grout	X7210	2	5.7	2.4	0.1
IN-W084	3.6	0	Lead, cadmium, beryllium, and other hazardous metals	macroencapsulation	X7210	0.05	5.7	11	0.0933
IN-W089	0.05	0	Debris, Thermal	grout	S5400	0.05	0.6	2.4	0.0006
IN-W096	0.32	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
IN-W100	1.77	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.01
IN-W111	28.1	45.7	Lead, cadmium, beryllium, and other hazardous metals	macroencapsulation	X7210	0.05	5.7	11	1.9121
IN-W117	0	0.59	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.0022
IN-W118A	4.123	0	Debris, Stabilization	grout	S5110	1	2.4	2.4	4
IN-W119	0.27	7	Wastewater, Thermal Treatment	grout	L1110	0.01	1	2.4	0.03
IN-W120	2.6	7	Wastewater, Thermal Treatment	grout	L1110	0.01	1	2.4	0.04
IN-W122A	169,1	380	Debris, Thermal	grout	\$5300	0.01	0.7	2.4	2
IN-W153	23.6	1.4	Lead, cadmium, beryllium, and other hazardous metals	macroencapsulation	X7210	0.05	5.7	11	0.6477
IN-W376	0.31	2.1	Lab Packs, Thermal Oxidation	polymer	X6300	0.05	1	1.4	0.1
IN-W381	0.46	6.18	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3100	2	1.3	2.4	7
IN-W387	0	10.9	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3120	2	1.3	2.4	12
IN-W388	0	4.25	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3110	2	0.9	2.4	3
IN-W396	1.81	4.5	Debris, Stabilization	grout	S5110	2	4	2.4	21
IN-W399	0.724	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S4100	2	1.6	2.4	1
IN-W400	0	0.02	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.0001
IN-W402	0	9.2	Lead, cadmium, beryllium, and other hazardous metals	macroencapsulation	X7210	0.05	5.7	11	0.2384
IN-W404	0	0.55	Lead, cadmium, beryllium, and other hazardous metals	macroencapsulation	X7210	0.05	5.7	11	0.0143

•

*

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m ³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm ³)	Final Bulk Density (g/cm ³)	Treated MLLW Volume (m ³)
Knolis Scher	nectady								
KA-W001	0.014	2	Lab Packs, Thermal treatment/Chemical reduction	polymer	X6900	0.05	1	1.4	0.1
KA-W002	0	0.1	Combustible Organics, Thermal treatment/Chemical reduction	grout	L2900	0.01	0.9	2.4	0.0004
KA-W005	0.187	0	Debris, Stabilization	grout	S5125	2	1	2.4	0.2
KA-W007	0.224	2	Combustible Organics, Thermal treatment/Chemical reduction	grout	L2900	0.01	0.9	2.4	0.01
KA-W008	0.002	0.6	Lab Packs, Chemical reduction	polymer	X6900	2	1	1.4	1
KA-W014	0	0.4	Combustible Organics, Thermal treatment/Chemical reduction	grout	S3290	0.01	0.8	2.4	0.001
KA-W015	0	16.8	Inorganic Homogeneous Solids and Soils, Thermal treatment/Chemical reduction	grout	S4900	2	1.5	2.4	21
KA-W018	0.033	1	Combustible Organics, Retort/Thermal treatment/Chemical reduction	grout	\$3290	2	0.8	2.4	0.7
KA-W020	0.029	0.08	Elemental mercury, Amalgamation	amalgam	X7100	15	10.9	10	2
Knolls Kesse	elring								
KK-W002	0	1	Debris, Stabilization	grout	S5113	2	4.4	2.4	4
KK-W003	0	0.25	Combustible Organics, Thermal treatment/Chemical reduction	grout	L2900	0.01	0.9	2.4	0.001
KK-W004	0.01	0.25	Lab Packs, Thermal treatment/Deactivation/Chemical reduction	polymer	X6900	0.05	1	1.4	0.01
KK-W008	0	0.75	Combustible Organics, Thermal treatment/Chemical reduction	grout	S3290	0.01	0.8	2.4	0.003
KK-W011	0	0.4	Combustible Organics, Thermal treatment/Chemical reduction	grout	L2900	0.01	0.9	2.4	0.002
KK-W012	0	0.25	Lab Packs, Deactivation/Chemical reduction	polymer	X6900	2	1	1.4	0.4
KK-W013	0	7.5	Inorganic Homogeneous Solids and Soils, Thermal treatment/Chemical reduction	grout	S4100	2	1.6	2.4	10
KK-W016	0	0.001	Elemental mercury, Amalgamation	amalgam	X7100	15	10.9	10	0.02
Knolls Wind	sor				1 2000	0.01			0.000
KW-W001	0	0.45	Combustible Organics, Thermal treatment/Chemical reduction	grout	L2900	0.01	0.9	2.4	0.002
KW-W002	0	0.02	Lab Packs, Chemical reduction	polymer	X6900	2	1	1.4	0.03
KW-W006	0	1.6	Combustible Organics, Thermal treatment/Chemical reduction	grout	\$3290	0.01	0.8	2.4	0.01
KW-W008	0	0.3	Lab Packs, Thermal treatment	polymer	26900	0.05	1	1.4	0.01
KW-W009	0	4.2	Inorganic Homogeneous Solids and Solis, Thermal treatment/Chemical reduction	grout	54100	4	1.0	2.4	0.02
	0	0.05	Inorganic Homogeneous Solios and Solis, Retory i nermai treatment/Chemical reductio	grout	33290	2		2.4	0.03
1 A-W069	15.89	0.01	Combustible Organics, Thermal	grout	L2190	0.01	1	2.4	0.1
LA-W070	2.47	4	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.02
LA-W073	39.32	0	Inorganic Homogeneous Solids and Soils, Stabilization	arout	S4100	2	1.6	2.4	52
LA-W074	1.65	0.5	Wastewater, Non-Thermal	grout	L2190	0.25	1	2.4	0.2
LA-W075	16.58	5.5	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.1
LA-W076	14.34	10	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.1
LA-W077	3,75	3	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.03
LA-W078	0.74	0.2	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.004
LA-W080	13.82	1.5	Debris, Stabilization	grout	S5390	2	0.7	2.4	9

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm³)	Final Bulk Density (g/cm ³)	Treated MLLW Volume (m ³)
LA-W083	0.13	0.01	Wastewater, Non-Thermal	grout	L1290	0.25	1.1	2.4	0.02
LA-W084	6.03	0.2	Debris, Stabilization	grout	\$5900	2	0.6	2.4	3
LA-W085	0.35	0.1	Compressed gases/aerosols, Chemical redox	grout	X7700	1	2	2.4	0.4
LA-W088	0.5	0.05	Elemental mercury, Amalgamation	amalgam	X7100	15	10.9	10	9
LA-W089	15.6	1	Debris, Stabilization	grout	S5119	2	4	2.4	55
LA-W090	5.62	3	Debris, Stabilization	grout	S5900	2	0.6	2.4	4
Lawrence Be	rkeley								
LB-W001	0.93	0.9	Wastewater, Thermal	grout	L1110	0.01	1	2.4	0.01
LB-W002	0.123	1.22	Wastewater, Thermal	grout	L1120	0.01	1	2.4	0.01
LB-W003	0.00035	0.55	Wastewater, Non-Thermal	grout	L1140	0.25	1	2.4	0.1
LB-W004	0.751	3.42	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.02
LB-W007	0.046	0.042	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.0003
LB-W011	0.01	0.1	Wastewater, Thermat	grout	L1110	0.01	1	2.4	0.0005
LB-W012	0	0.13	Wastewater, Thermal	grout	L1120	0.01	1	2.4	0.001
LB-W014	0	0.38	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.001
LB-W017	0	0.004	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.00002
LB-W019	0.001	0.015	Debris, Thermal	grout	S5440	0.05	0.7	2.4	0.0002
LLNL			•						
LL-W001	5.83	5	Lab Packs, Chemical Oxidation	polymer	X6400	2	1	1.4	15
LL-W002	124.8	110	Inorganic Homogeneous Solids and Soils, Stabilization	clay	S3121	2	1.3	2.4	254
LL-W004	72.99	1350	Combustible Organics, Non-Thermal	clay	L2120	0.15	1	2.4	89
LL-W005	5.6	5	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3129	2	1.3	2.4	11
LL-W006	18.8	5	Debris, Non-Thermal	grout	S5111	2	4	2.4	79
LL-W007	4.37	5	Debris, Stabilization	grout	S5123	2	1.6	2.4	12
LL-W008	7.2	10	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.1
LL-W009	3.6	8.5	Combustible Organics, Thermal	grout	L2290	0.01	0.9	2.4	0.05
LL-W010	12.2	10	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	30
LL-W014	15.67	20	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.1
LL-W015	3.49	15	Debris, Stabilization	grout	S5410	2	1	2.4	15
LL-W016	0.46	1	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.0 <u>1</u>
LL-W017	58.96	50	Debris, Thermal	grout	S5490	0.05	0.6	2.4	1
LL-W023	6.6	30	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4300	2	1.9	2.4	58
LL-W025	141.3	125	Inorganic Homogeneous Solids and Soils, Stabilization	clay	S3150	2	1.8	2.4	399
LL-W026	1.2	5	Combustible Organics, Thermal	grout	S3229	0.01	1.2	2.4	0.03
Mound									
MD-W001	43.3	0	Scintillation Cocktails, Stabilization	grout	X6400	0.05	1	1.4	2
MD-W012	0.0204	0.02	Debris, Stabilization	grout	S5311	2	1.8	2.4	0.1

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm³)	Final Bulk Density (g/cm³)	Treated MLLW Volum e (m ³)
Mare Island									
MI-W004	0.45	0	Thallium, Decontamination/Macroencapsulation	macroencapsulation	X7290	1	4	4	0.5
MI-W008	2.83	0	Debris, Macroencapsulation	macroencapsulation	S5119	1	4	4	3
MI-W014	3.68	0	Debris, Stabilization	grout	S5113	2	4.4	2.4	13
Univ. of Miss	ouri								···
MU-W001	1.4	4	Debris, Stabilization	grout	S5440	2	0.17	2.4	0.8
Norfolk Nava	l l								
NN-W003	0.08	1.89	Debris, Macroencapsulation	macroencapsulation	S5119	1	4	4	2
NTS									*** <u></u>
NT-W015	0.21	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.001
ORNL									
OR-W008	18.95	0	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	0.1
OR-W048	17.732	15.83	Wastewater, Thermal Treatment	grout	L1000	0.001	1.1	2.4	0.02
OR-W049	3.642	15.455	Wastewater, Thermal Treatment	grout	L1000	0.001	1.1	2.4	0.01
OR-W050	0.831	2.925	Wastewater, Thermal Treatment	grout	L1000	0.001	1.1	2.4	0.002
OR-W051	37.572	49.445	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	0.3
OR-W053	1.021	1.66	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	0.01
OR-W054	0.074	0.06	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	0.1
OR-W055	2.299	1.23	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	2
OR-W056	1.488	1.68	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	2
OR-W057	0.023	0.045	Combustible Organics, Thermal	grout	S3200	0.01	1.2	2.4	0.0003
OR-W058	0.011	0	Combustible Organics, Thermal	grout	S3200	0.01	1.2	2.4	0.0001
OR-W061	1.88	7.645	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4000	2	1.5	2.4	12
OR-W062A	0.31	0.005	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4000	2	1.5	2.4	0.4
OR-W082	2.103	4.545	Combustible Organics, Thermal	grout	L9000	0.01	1	2.4	0.03
Paducah GDI	P								
PA-W005	0.05	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.0002
PA-W040	3.41	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
PA-W043	0.02	0	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.001
PA-W044	1.72	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.01
PA-W046	0.52	0	Wastewater, Non-Thermal	grout	L1140	0.25	1	2.4	0.1
PA-W055	7.4	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.03
PA-W056	1.06	0	Combustible Organics, Thermat	grout	L2290	0.01	0.9	2.4	0.004

	MWIR	MWIR				Activity-	Initial	Final	Treated
	Current	5-Yr			Matrix	Per-Unit-	Bulk	Bulk	MLLW
MWR	Volume	Projected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m³)	Volume (m ³)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm ³)	(g/cm^3)	(m ³)
PA-W058	5,18	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3132	2	1.6	2.4	7
PA-W060	0.52	0	Combustible Organics, Thermal	grout	S3290	0.01	0.8	2.4	0.002
PA-W065	0.24	0	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.01
PA-W073	10.84	0	Wastewater, Thermal Treatment	grout	L1110	0.01	1	2.4	0.05
PA-W075	2.13	0	Wastewater, Thermal Treatment	grout	L1190	0.01	1	2.4	0.01
PA-W147	2.89	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.01
PA-W148	2.41	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
PA-W149	0.4	0	Inorganic Homogeneous Solids and Soils, Thermat	grout	S3132	2	1.6	2.4	1
PA-W150	0.01	0	Combustible Organics, Thermal	grout	L2120	0.01	1	2.4	0.00004
PA-W151	0.72	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3114	2	1	2.4	1
PA-W152	0.4	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3129	2	1.3	2.4	0.4
PA-W153	0.6	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3139	2	1.6	2.4	1
PA-W154	3.59	0	Combustible Organics, Non-Thermal	grout	S3222	2	1.2	2.4	4
PA-W155	0.2	0	Combustible Organics, Thermal	grout	S3290	0.01	0.8	2.4	0.001
PA-W165	3.15	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.01
PA-W166	31	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.1
PA-W167	5	0	Combustible Organics, Non-Thermal	grout	S3222	2	1.2	2.4	5
PA-W170	0.32	0	Wastewater, Thermal Treatment	grout	L1130	0.01	1	2.4	0.001
PA-W171	1	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.004
PA-W172	0.2	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.001
PA-W177	0.2	0	Explosives/propellants, Chemical Deactivation	polymer	X7600	2	1.5	1.4	0.4
PA-W181	0.41	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
PA-W188	1	0	Combustible Organics, Non-Thermal	grout	S3229	2	1.2	2.4	1
Pearl Harbor									
PH-W002	0.04	0	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.0002
PH-W007	0.04	0.1	Debris, Stabilization	grout	S5900	2	0.6	2.4	0.1
Portsmouth I	Naval								
PN-W004	0.45	0.13	Debris, Stabilization	grout	S5119	2	4	2.4	2
PN-W005	0	0.148	Debris, Stabilization	grout	S5410	2	1	2.4	0.1
Portsmouth (GDP								
PO-W002	0.416	0	Combustible Organics, Thermal	grout	S3222	0.01	1.2	2.4	0.002
PO-W014	2.08	0	Wastewater, Non-Thermal	grout	L1240	0.25	1.1	2.4	0.2
PO-W017	37.05	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3132	2	1.6	2.4	49
PO-W018	70.942	2	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3115	2	1	2.4	61
PO-W019	147.147	0	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.6
PO-W022	12.787	0	Combustible Organics, Thermal	grout	S3229	0.01	1.2	2.4	0.1

	MWIR	MWIR				Activity-	Initial	Final	Treated
	Volume	D-TI Brojected			Matrix	Per-Unit-	Bulk	Bulk	MLLW
MWIR	volume	Fillected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m ⁻)	Volume (m ⁻)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm³)	(g/cm³)	(m³)
PO-W025	0.435	0	Debris, Stabilization	grout	S5330	2	0.6	2.4	0.2
PO-W027	1.712	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3111	2	1.2	2.4	2
PO-W028	2.912	0	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.01
PO-W030	9.02	0	Lab Packs, Stabilization	polymer	X6900	2	1	1.4	13
PO-W031	7.332	0	Lab Packs, Thermal Oxidation	polymer	X6900	0.05	1	1.4	0.3
PO-W032	2.932	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3132	2	1.6	2.4	4
PO-W039A	2260.322	100	Inorganic Homogeneous Solids and Soils, Thermal Desorption	soil	S4100	1	2	2	2360
PO-W040	0.643	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.002
PO-W044	0.208	0	Wastewater, Thermal Treatment	grout	L1230	0.001	1.1	2.4	0.0001
PO-W046	10.623	0	Debris, Stabilization	grout	S5390	2	0.7	2.4	6
PO-W047	14.53	0	Lab Packs, Stabilization	polymer	X6900	.2	1	1.4	21
PO-W053	18,587	0	Wastewater, Thermal Treatment	grout	L1110	0.001	1	2.4	0.01
PO-W057	53.952	0	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.2
PO-W058	135.46	105	Combustible Organics, Thermal	grout	S3211	0.01	0.8	2.4	0.8
PO-W059	0.656	0	Debris, Stabilization	grout	S5440	2	2.4	2.4	1
PO-W066	8.112	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3129	2	1.3	2	11
PO-W069	154.873	Ō	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4900	2	1.5	2.4	194
PO-W070	0.208	0	Compressed gases/aerosols, Thermal oxidation	other	X7700	1	2	2	0.2
PO-W072	2.496	0	Combustible Organics, Thermal	grout	S3219	0.01	1	2.4	0.01
PO-W073	3.12	0	Debris, Stabilization	grout	\$5390	2	0.7	2.4	2
PO-W076	0.569	0	Combustible Organics, Non-Thermal	grout	L2120	0.25	1	2.4	0.1
PO-W077	3.442	9	Combustible Organics, Thermal	grout	L2110	0.01	1	2.4	0.1
Puget Sound					·				
PS-W004	0.19	0	Liquid, Thermal	grout	L9000	0.01	1	2.4	0.001
PS-W006	0.84	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3150	2	1.8	2.4	1
PS-W012	0.16	2	Debris, Thermal treatment/Chemical reduction	grout	S9000	2	1.5	2.4	3
PS-W018	0.3	0	Liquid, Chemical reduction/Stabilization/Deactivation	grout	L9000	2	1	2.4	0.3
Pantex									
PX-W010	18.9	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3111	2	1.2	2.4	19
PX-W021	57.4	24.4	Debris, Stabilization	grout	S5330	2	0.6	2.4	41
PX-W023	9.5	21	Debris, Stabilization	grout	S5330	2	0.6	2.4	15
PX-W024	1.5	0.5	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.01
PX-W025	11.2	95.4	Debris, Stabilization	grout	S5119	2	0.4	2.4	36
PX-W027	2.3	5	Debris, Stabilization	grout	S5440	2	0.7	2.4	4
PX-W028	1.7	1.8	Debris, Stabilization	grout	S5122	2	1.6	2.4	5
PX-W029	1.5	7.6	Debris, Stabilization	grout	S5490	2	0.6	2.4	5
PX-W032	0.4	0.33	Combustible Organics, Thermal	grout	S3139	0.01	1.6	2.4	0.005
PX-W034	1.6	0.6	Wastewater, Non-Thermal	grout	L1290	0.25	1.1	2.4	0.3

MWIR	MWIR Current Volume	MWIR 5-Yr Projected		Primary	Matrix Parameter	Activity- Per-Unit- Mass	Initial Bulk Density	Final Bulk Density	Treated MLLW Volume
Survey ID	(m³)	Volume (m ³)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm ³)	(g/cm ³)	(m ³)
PX-W038	0.003	0	Compressed gases/aerosols, Thermal oxidation	grout	X7700	1	2	2.4	0.003
PX-W040	0	2.9	Lab Packs, Thermal Oxidation	polymer	X6100	0.05	1	1.4	0.1
PX-W044	0.21	0	Debris, Stabilization	grout	S5000	2	1.5	2.4	0.3
Rocky Flats									
RF-W003	95.4	0	Inorganic Homogeneous Solids and Soils, Extraction/Oxidation	grout	S3150	2	1.8	2.4	143
RF-W005	163.13	1059.32	Debris, Stabilization	grout	S5112	2	5.7	2.4	5807
RF-W006	1226.94	753	Debris, Non-Thermal	grout	S5440	2	0.7	2.4	1155
RF-W007	66,36	0	Inorganic Homogeneous Solids and Soils, Extraction/Oxidation	arout	S3144	2	1.4	24	77
RF-W009	457.38	11.16	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3121	2	1.3	2.4	508
RF-W015	41.63	0	Combustible Organics, Thermal	grout	L2290	0.01	0.9	2.4	0.2
RF-W017	39.01	0	Combustible Organics, Thermal	grout	L2210	0.01	0.9	2.4	0.1
RF-W018	5708.07	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3150	2	1.8	2.4	8562
RF-W019	3451.45	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3150	2	1.8	2.4	5177
RF-W020	3.15	0	Lead, cadmium, beryllium, and other hazardous metals	macroencapsulation	X7300	0.05	1.3	11	0.02
RF-W022	10.92	0	Inorganic Homogeneous Solids and Soils, Thermat	grout	S3111	2	1.2	2.4	11
RF-W024	10.29	12.45	Inorganic Homogeneous Solids and Soils, Thermal Desorption	soil	S5122	2	1.6	2	36
RF-W025	0.29	0	Inorganic Homogeneous Solids and Soils, Extraction/Oxidation	grout	S3114	2	1	2.4	0.2
RF-W027	1.15	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3132	2	1.6	2.4	2
RF-W030	3.57	27.69	Debris, Stabilization	grout	S5311	2	1.8	2.4	47
RF-W031	0.21	11.13	Debris, Stabilization	grout	S5311	2	1.8	2.4	17
RF-W035	0.42	0	Debris, Stabilization	grout	S5112	2	5.7	2.4	2
RF-W042	1.13	0	Debris, Stabilization	grout	S5119	2	4	2.4	4
RF-W043	2.52	19.93	Debris, Stabilization	grout	S5122	2	1.6	2.4	30
RF-W045	2.94	4.65	Debris, Stabilization	grout	S5129	2	1.2	2.4	8
RF-W046	48.22	0	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.2
RF-W047	4.44	0	Wastewater, Non-Thermal	grout	L1190	0.25	1	2.4	0.5
RF-W049	1.94	27.2	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.1
RF-W050	406.05	386	Inorganic Homogeneous Solids and Soils, Thermal Desorption	soil	S4200	2	1.6	2	1267
RF-W054	0.44	0	Wastewater, Non-Thermal	grout	L1140	0.25	1	2.4	0.05
RF-W062	0.42	0	Inorganic Homogeneous Solids and Soils, Extraction/Oxidation	arout	S3150	2	1.8	2.4	0.6
RF-W071	87.6	146.53	Inorganic Homogeneous Solids and Soils, Extraction/Oxidation	arout	S3129	2	1.3	2.4	254
RF-W074	4.14	7.8	Debris, Stabilization	grout	S5410	2	1	2.4	10
RF-W075	2.52	44.25	Debris, Stabilization	grout	S5410	2	1	2.4	39
RF-W078	169.8	0	Wastewater, Non-Thermal	arout	L1130	0.25	1	2.4	18
RF-W079	56.2	11.15	Wastewater, Non-Thermal	grout	L1290	0.25	11	24	8
RF-W080	0	1425	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3143	2	14	24	1663
RF-W081	10.81	0	Debris, Non-Thermal	arout	\$5330	2	0.6	2.4	5
RF-W082	0.52	0	Debris, Non-Thermal	grout	S5119	2	4	2.4	2

									·
	MWIR	MWIR				Activity-	Initial	Final	Treated
	Current	5-Yr		1	Matrix	Per-Unit-	Bulk	Bulk	MLLW
MWIR	Volume	Projected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m ³)	Volume (m ³)	Waste Type, Process Flow	Waste Form	Category	Ratio	(a/cm^3)	(α/cm^3)	(m ³)
RF-W083	40.46	13.49	Lab Packs, Thermal Oxidation	polymer	X6900	0.05	1	14	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
RF-W085	4.92	13.45	Lab Packs, Stabilization	polymer	X6900	2	1	1.4	26
RF-W086	2	13.45	Lab Packs, Thermal Oxidation	polymer	X6900	0.05	1	1.4	20
RF-W087	293.1	0	Wastewater, Non-Thermal	arout	1 1 1 9 0	0.05	1	2.4	31
RF-W088	1086	0	Inorganic Homogeneous Solids and Soils. Stabilization	grout	53122	2	12	2.4	31
				grout	00122		1.5	2.4	
Hanford									
RL-W019	0.888	1.198	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	12	24	2
RL-W020	47.388	63.916	Inorganic Homogeneous Solids and Soils, Stabilization	arout	\$3129	2	13	24	121
RL-W023	19.629	13.915	Debris, Stabilization	arout or polymer	S5490	2	0.6	24	17.
RL-W024	3.36	2.382	Debris, Stabilization	arout or polymer	S5420	2	12	24	6
RL-W025	2.626	1.861	Debris, Stabilization	arout or polymer	S5420	2	12	24	4
RL-W026	4.728	76.515	Debris, Stabilization	arout or polymer	S5190	2	12	24	81
RL-W028	3.068	2.175	Debris, Stabilization	grout or polymer	S5420	- 2	12	24	5
RL-W030	12.72	9.017	Debris, Stabilization	grout or polymer	\$5490	2	0.6	24	11
RL-W032	14.279	10.123	Debris, Stabilization	grout or polymer	\$5440	2	0.0	24	14
RL-W033	1.046	0.742	Debris, Stabilization	grout or polymer	S5490	2	0.6	24	
RL-W036	0.63	10.196	Debris, Stabilization	grout or polymer	S5122	2	1.6	24	14
RL-W037	1,45	1.956	Elemental mercury, Amalgamation	amalgam in grout	X7100	15	10.9	10	56
RL-W041	13.187	9.349	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	13
RL-W042	7.309	9.858	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	8
RL-W046	11.292	15.23	Lab Packs, Thermal Oxidation	glass/metal slag	X6100	1	1	2.2	12
RL-W049	39.678	46.465	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4200	2	1.6	2.4	115
RL-W050	1.243	1.456	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4200	2	1.6	2.4	4
RL-W051	0.21	0.246	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.6
RL-W052	3.085	4.161	Inorganic Homogeneous Solids and Soils, Stabilization	glass/metal slag	S3114	1	1	2.2	3
RL-W053	1.487	2.005	Inorganic Homogeneous Solids and Soils, Stabilization	glass/metal slag	S3114	1	1	2.2	2
RL-W054	10.624	14.33	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3129	2	1.3	2.4	27
RL-W055	55.388	39.264	Debris, Stabilization	grout or polymer	S5490	2	0.6	2.4	47
RL-W056	58.314	41.339	Debris, Stabilization	grout or polymer	S5410	2	1	2.4	83
RL-W057	227.314	524.574	Debris, Stabilization	grout or polymer	S5390	2	0.7	2.4	439
RL-W058	13.036	9.241	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	13
RL-W059	6.48	4.594	Debris, Stabilization	grout or polymer	S5490	2	0.6	2.4	6
RL-W060	34.01	24.109	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	34
RL-W061	1.05	1.416	Inorganic Homogeneous Solids and Soils, Stabilization	glass/metal slag	S3114	1	1	2.4	1
RL-W062	2.659	1.728	Elemental lead, Macroencapsulation	macroencapsulation	X7219	2	1.5	7	
RL-W063	3.508	4.732	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	4
RL-W064	36.588	49.35	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	39
RL-W065	29.891	40,317	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	32
RL-W066	9.681	13.057	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	10

,

.

.

i	MWIR Current	MWIR 5-Yr			Matrix	Activity- Per-Unit-	initial Bulk	Final Bulk	Treated MLLW
MWIR	Volume	Projected		Primary	Parameter	Mass	Density	Density	Volume
Survey ID	(m³)	Volume (m ³)	Waste Type, Process Flow	Waste Form	Category	Ratio	(g/cm ³)	(g/cm ³)	(m³)
RL-W067	0.21	0.283	Lab Packs, Thermal Oxidation	glass/metal slag	X6100	1	1	2.2	0.2
RL-W068	543.68	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3122	2	1.3	2.4	589
RL-W069	1099.314	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3122	2	1.3	2.4	1191
RL-W087	7.144	9.636	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	1.2	2.4	17
RL-W092	0.03	0.041	Lab Packs, Thermal Oxidation	glass/metal slag	X6100	1	1	2.2	0.03
RL-W093	18.89	13.391	Debris, Stabilization	grout or polymer	S5490	2	0.6	2.4	16
RL-W094	36.755	49.575	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3190	2	1.5	2.4	108
RL-W095	119.416	84.653	Debris, Stabilization	grout or polymer	S5420	2	1.2	2.4	204
RL-W097	10.584	7.503	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	11
RL-W098	9.119	10.679	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	26
RL-W099	0.63	0.85	Lab Packs, Thermal Oxidation	glass/metal slag	X6200	1	1	2.2	0.7
RL-W100	33.765	45.542	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	36
RL-W113	15	0	Debris, Stabilization	grout or polymer	S5490	2	0.6	2.4	8
RL-W114	0.835	1.126	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	1.2	2.4	2
RL-W115	1.24	0.879	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	1
RL-W116	1.815	1.287	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	2
RL-W117	0.2	0.141	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	0.2
RL-W118	1.05	0.744	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	1
RL-W119	0.2	0.234	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4200	2	1.6	2.4	0.6
RL-W122	10.7	12.53	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4200	2	1.6	2.4	31
RL-W124	1.26	1.699	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	1.2	2.4	3
RL-W126	0.2	0.141	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	0.2
RL-W127	1.041	0.738	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	1
RL-W128	0.208	0.148	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	0.2
RL-W129	0.834	0.591	Debris, Stabilization	grout or polymer	S5490	2	0.6	2.4	0.7
RL-W130	2.851	3.845	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1 .	1	2.2	3
RL-W131	0.2	0.141	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	0.2
RL-W132	1.626	2.193	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	2
RL-W140	67.873	79.483	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4200	2	1.6	2.4	196
RL-W141	10.56	7.486	Debris, Stabilization	grout or polymer	S5410	2	1	2.4	15
RL-W142	54.742	885.912	Debris, Stabilization	grout or polymer	S5119	2	4	2.4	3136
RL-W143	0.322	0.436	Inorganic Homogeneous Solids and Soils, Stabilization	glass/metal slag	S3114	1	1	2.2	0.3
RL-W144	0.208	0.28	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	2.2	0.2
RL-W146	0.418	0.297	Debris, Stabilization	grout or polymer	S5440	2	0.7	2.4	0.4
RL-W149	0.208	0.28	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3119	2	1.2	2.4	0.5
RL-W150	0.208	0.148	Debris, Stabilization	grout or polymer	S5420	2	1.2	2.4	0.4
RL-W151	0.2	0.141	Debris, Stabilization	grout or polymer	S5420	2	1.2	2.4	0.3
RL-W152	1.112	0.722	Lead, cadmium, beryllium, and other hazardous metals, Macroencapsulation	macroencapsulation	X7219	2	1.5	7	0.8
RL-W153	0.208	0.243	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4100	2	1.6	2.4	0.6
RL-W170	1.4574	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3110	2	0.9	2.4	1

•

	MWIR	MWR					I	F 1. 1	-
	Current	5.Yr				Activity-	mitiai	Final	Ireated
	Volume	Projected			Matrix	Per-Unit-	Donaite	Bulk	MLLVV
Survey ID	(m ³)	Volume (m ³)	Waste Tune, Broose Eleve	Primary	Parameter	Mass	Density	Density	Volume
DI MATT	0.2092		Waste Type, Flocess Flow	Waste Form	Category	Ratio	(g/cm°)	(g/cm³)	(m³)
RL-W173	0.2002	0	inorganic Homogeneous Solids and Solis, Stabilization	grout	S3110	2	0.9	2.4	0.2
RL-W174	5.8290	0	Inorganic Homogeneous Solids and Solis, Stabilization	grout	S4200	2	1.6	2.4	8
RL-W175	1.2492	0	Debris, Stabilization	grout or polymer	S5110	2	4	2.4	4
RL-W170	5.8290	0	Uebris, Stabilization	grout or polymer	S5300	2	0.7	2.4	3
RL-W177	40,0008	0	Lab Packs, Thermal Oxidation	glass/metal slag	X6100	1	1	2.2	18
RL-W180	0.2082	0	Inorganic Homogeneous Solids and Soils, Stabilization	glass/metal slag	L2200	1	0.9	2.2	0.1
RL-W181	0.2082	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	\$3110	2	0,9	2.4	0.2
RL-W182	19.3282	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3110	2	0.9	2.4	14
RL-W184	21.8166	0	Backlog soils, Meet BDAT	soil	S4200	1	2.2	2.2	22
RL-W185	261.7322	0	Backlog soils, Meet BDAT	soil	S4200	1	2.2	2.2	262
RL-W186	121.8378	0	Debris, Stabilization	grout or polymer	\$5110	2	4	2.4	406
RL-W187	26.5612	. 0	Debris, Stabilization	grout or polymer	S5120	2	1.5	2.4	33
RL-W188	126.7592	0	Debris, Stabilization	grout or polymer	S5125	2	1	2.4	106
RL-W189	1257.531	0	Debris, Stabilization	grout or polymer	\$5300	2	0.7	2.4	734
RL-W190	63.2016	0	Debris, Stabilization	grout or polymer	S5400	2	0.6	2.4	32
RL-W192	0.2082	0	Lead, cadmium, beryllium, and other hazardous metals, Macroencapsulation	macroencapsulation	X7210	2	5.7	7	0.3
RL-W196	4.0694	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	\$3110	2	0.9	2.4	3
RL-W197	7.4952	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	\$3110	2	0.9	2.4	6
RL-W199	0.4164	0	Debris, Stabilization	grout or polymer	\$5400	2	0,6	2.4	0.2
RL-W200	8.2624	0	Debris, Stabilization	grout or polymer	S5110	2	4	2.4	28
RL-W201	1.2492	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3110	2	0.9	2.4	0.9
RL-W202	2.631	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3110	2	0.9	2.4	2
RL-W203	1.4764	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3110	2	0.9	2.4	1
RL-W205	1.6656	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3110	2	0,9	2.4	1
RL-W206	1.041	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4200	2	1.6	2.4	1
RL-W208	16.383	0	Debris, Stabilization	grout or polymer	S5110	2	4	2.4	55
RL-W209	0.2082	0	Debris, Stabilization	grout or polymer	\$5125	2	1	2.4	0.2
RL-W210	47.1851	. 0	Debris, Stabilization	grout or polymer	\$5300	2	0.7	2.4	28
RL-W211	49.7692	0	Debris, Stabilization	grout or polymer	\$5400	2	0.6	2.4	25
RL-W215	17.4888	0	Lab Packs, Thermal Oxidation	glass/metal slag	X6100	1	1	2.2	8
RL-W216	6.8706	0	Lab Packs, Thermal Oxidation	glass/metal slag	X6900	1	1	22	
RL-W217	6.4542	0	Lead, cadmium, beryllium, and other hazardous metals, Macroencapsulation	macroencapsulation	X7210	2	57	7	11
RL-W226	98.601	0	Debris, Stabilization	grout or polymer	S5120	2	15	2.4	123
RL-W227	0.2082	0	Debris, Stabilization	arout or polymer	\$5300	2	07	24	01
RL-W228	37.5342	0	Debris, Stabilization	grout or polymer	\$5400	2	0.6	24	19
RL-W231	31.855	0	Inorganic Homogeneous Solids and Soils, Stabilization	grout	\$4200	2	1.6	2.4	42
RL-W232	8.7	0	Debris, Stabilization	grout or polymer	S5110	2	4	24	29
RL-W233	43.5	0	Debris, Stabilization	grout or polymer	\$5300	2	0.7	24	25
RL-W234	21.7	0	Debris, Stabilization	grout or polymer	S5110	2	4	2.4	72

.

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m ³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm ³)	Final Bulk Density (g/cm ³)	Treated MLLW Volume (m ³)
RMI									
RM-W009	1.5	0.23	Combustible Organics, Thermal	arout	1 2210	0.01	0.0	24	0.01
RM-W010	6.4	0.23	Debris. Stabilization	grout	\$5300	2	0.3	2.4	0.01
RM-W011	5.1	0.23	Combustible Organics. Thermal	grout	12210	0.01	0.7	2.4	0.02
RM-W013	0	0.23	Debris, Stabilization	grout	\$5123	2	1.6	2.4	0.02
RM-W014	0.23	0.23	Debris, Stabilization	grout	\$5330	2	0.6	2.4	0.3
SNL				3.000		-	0.0		0.2
SA-W196	0.04	0.5	Lead, cadmium, beryllium, and other hazardous metals, Macroencapsulation	macroencapsulation	X7219	0.05	5.7	11	0.01
SA-W198	0.000067	0	Elemental mercury, Amalgamation	amalgam	X7100	15	10.9	10	0.001
SA-W201	6.6	60	Debris, Stabilization	grout	S5190	2	1.2	2.4	67
SA-W202	29	0	Debris, Non-Thermal	grout	S5490	2	2	2.4	48
SA-W203	2.7	50	Combustible Organics, Thermal	grout	L2900	0.01	0.9	2.4	0.2
5A-VV204	0.9	ľ	Debris, Stabilization	grout	\$5390	2	2	2.4	3
Savannah Ri	ver								
SR-W001	8.4	5	Lab Packs, Thermal Oxidation	arout	X6400	0.01	0.9	24	0.1
SR-W003	9.3	2.6	Debris, Thermal	arout	\$5330	0.1	0.6	2.4	0.3
SR-W004	850	20	Inorganic Homogeneous Solids and Soils, Thermal	vit	S3121	0.2	1.2	2.6	80
SR-W005	15.4	0	Inorganic Homogeneous Solids and Soils, Thermal	vit	S3121	0.2	1.1	2.6	1
SR-W009	10.2	3.1	Inorganic Homogeneous Solids and Soils, Stabilization	Macroencapsulation	S3119	1	0.65	0.65	13
SR-W015	9.9	253.24	Debris, Stabilization	Macroencapsulation	S5119	1	0.63	7.8	21
SR-W018	260	0	Inorganic Homogeneous Solids and Soils, Thermal	grout	\$3121	0.1	1.3	2.4	14
SR-W029	1	0.4	Inorganic Homogeneous Solids and Soils, Thermal	vit	S3150	0.2	1.8	2.6	0.2
SR-W031	0.6	0	Wastewater, Stabilization	vit	S3129	0.2	1.3	2.6	0.1
SR-W037	1579	0	Inorganic Homogeneous Solids and Soils, Thermal	vit	S3120	0.2	1.2	2.6	146
SR-W038	0.4	0	Inorganic Homogeneous Solids and Soils, Thermal	vit	S3120	0.2	1.3	2.6	0.04
SR-W039	5	0	Wastewater, Direct Stabilization	vit	L1210	0.2	1	2.6	0.5
SR-W042	5.4	7	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3131	0.01	1.6	2.4	0.1
SR-W046	0	124	Inorganic Homogeneous Solids and Soils, Thermal	grout	S3111	0.1	1.2	2.4	6
SR-W047	0	800	Wastewater, Thermal Treatment	grout	L1230	0.1	1.1	2.4	37
SR-W060	0.2	0	Wastewater, Non-Thermal	macroencapsulation	S3113	1	1.2	2.1	0.1
SR-W069	73.5	15	Debris, Stabilization	macroencapsulation	X7210	1	5.7	5.7	89
SR-W079	0.4	1.6	Wastewater, Thermal	grout	L2110	0.01	1	2.4	0.008
SR-W080	1.7	0	Debris, Thermal	grout	S5390	0.1	0.6	2.4	0.04

.

MWIR Survey ID	MWIR Current Volume (m ³)	MWIR 5-Yr Projected Volume (m ³)	Waste Type, Process Flow	Primary Waste Form	Matrix Parameter Category	Activity- Per-Unit- Mass Ratio	Initial Bulk Density (g/cm³)	Final Bulk Density (g/cm ³)	Treated MLLW Volume (m ³)
Most Valley									
	0.0836	0.041	Ornanic Extraction Waste Thermal Oxidation	polymer	1 2210	0.05	09	14	0.004
WV-W005	0.0522	0	Combustible Organics, Thermal	arout	1 2210	0.00	0.0	24	0.004
WV-W006	0.0039	0	Pu Scintillation. Thermal Oxidation	polymer	X6100	0.05	1	14	0.0002
WV-W009	0.0023	0.0015	Combustible Organics. Thermal	arout	L2220	0.01	0.9	24	0.00001
WV-W014	0.0716	0.0648	Sr Organic Waste, Thermal Oxidation	polymer	L2120	0.05	1	1.4	0.005
WV-W016	0.0003	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.000001
WV-W019	1.9382	2.5	Combustible Organics, Thermal	grout	L2000	0.01	0,9	2.4	0.02
WV-W032	0.0038	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.00001
WV-W043	0.0019	0.002	Combustible Organics, Non-Thermal	grout	L2190	.2	1	2.4	0.003
WV-W044	0.0183	0	Combustible Organics, Thermal	grout	L2220	0.01	0.9	2.4	0.0001
WV-W045	0.0004	0	Elemental mercury, Amalgamation	amalgam	X7100	15	10.9	10	0,01
orr Y-12 Si	le								
YP-W003	4.56	0.015	Combustible Organics, Thermal	grout	S5300	0.01	0.7	2.4	0.01
YP-W005	6386.273	1143.31	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S3100	2	1.3	2.4	8157
YP-W183	113.443	0	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	0.4
YP-W187	36.659	119.485	Wastewater, Thermal Treatment	grout	L1000	0.001	1.1	2.4	0.1
YP-W188	3.403	3.42	Wastewater, Thermal Treatment	grout	L1000	0.001	1.1	2.4	0.003
YP-W189	0.066	0.065	Wastewater, Non-Thermal	grout	L1000	0.001	1.1	2.4	0.0001
YP-W190	186.722	128.39	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	1
YP-W191	4.619	7.83	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	0.05
YP-W192	8.896	36.66	Combustible Organics, Thermal	grout	L2000	0.01	0.9	2.4	0.2
YP-W193	3.132	0.27	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	2
YP-W194	44.337	136.095	Inorganic Homogeneous Solids and Soils, Stabilization	glass	S3100	1	1.3	2.6	90
YP-W195	42,178	13.45	Inorganic Homogeneous Solids and Soils, Stabilization	glass	\$3100	1	1.3	2.6	28
YP-W196	42.291	6.09	Combustible Organics, Thermal	grout	S3200	0.01	1.2	2.4	0.2
YP-W198	1.464	0.97	Combustible Organics, Thermal	grout	S3200	0.01	1.2	2.4	0.01
YP-W200	10.417	5.185	Inorganic Homogeneous Solids and Soils, Stabilization	grout	S4000	2	1.5	2.4	20
YP-W201A	10.23	1.58	Inorganic Homogeneous Solids and Soils, Stabilization	grout	L2000	2	0.9	2.4	9
YP-W204	2.806	1.905	Debris D018-D043, Stabilization	grout	S5100	2	2	2.4	8
YP-W208	6.951	16.005	Debris D018-D043, Stabilization	grout	S5400	2	2	2.4	38

Appendix D:

SUMMARY OF COMPARISONS OF WASTE STREAM CONCENTRATIONS WITH RESULTS OF THE PERFORMANCE EVALUATION

This appendix contains summary tables of comparisons of radionuclide concentrations in residual MLLW with estimates of limiting concentrations for the 15 sites evaluated in the performance evaluation (PE) report. Table C-1 contains comparisons based on a generic trench disposal facility and Table C-2 contains similar comparisons for a generic tumulus disposal facility.

Each row in the tables represents a waste stream with one or more radionuclides for which sufficient radiological data were available to estimate concentrations of radionuclides in waste. For each combination of waste stream and site, the sum-of-fractions calculation was performed for all known radionuclides in the waste stream. The results of these calculations are summarized using symbols:

<u>Symbol</u>	Sum-of-Fractions (SOF)
0	SOF < 0.1
	$0.1 < \text{SOF} \le 1.0$
	$1.0 < \text{SOF} \le 10$
\bullet	SOF > 10

For waste streams that resulted in a calculated sum-of-fractions greater than 10 at any site, the controlling radionuclide is listed. The controlling radionuclides are those whose individual fractions are greater than 1 prior to being summed. Waste streams highlighted by gray shading indicate that the results of sum-of-fractions calculations for every site were greater than 10 (represented by the \bigcirc -symbol).

In both tables, the only entry for the West Valley Demonstration Project (WVDP) is for a West Valley waste stream, WV-W019. Because the WVDP Act of 1980 does not authorize disposal of off-site waste, only on-site waste streams were considered in the analysis.

Intentionally left blank

					-	1											
- >	inal lume	-			ž –								PimnH				
MWIR ID	m³) LL	H H	anford	NTS	NEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	đ	Controlling Nuclide(s)
Argonne Ea:	st															Γ	
AE-W015	119	п	8	0	0	=	0	0	0					•			
AE-W023	2	-	0	0	0	0		0	0		0						
AE-W026	10	0	0	0	0		0	0	0	0	0	0					
AE-W033	35	-				•					•	•	•	•	•		
AE-W035	9		•	•	•	•	•	٠	•	•	•	•	•				Be-736 IN-750 Am 241
AE-W044	₹ V	0	0	0	0	0	0	0	0	0	0						
Argonne We	st												┢			ſ	
AW-W009	- -		0	0	0	0		0	0	0	0				0		
Batelle Columi	snc													T		T	
BC-W002	1		0	0	0	0	0	0	0	0	0						
Brookhave																	
BN-W004	4		0	0	0	0	0	o	0	0	0	0	0	0	0		
Bettis																Γ	
BT-W007	1 1	_	•	0	•	•	0	0		•	•	•	•	•	•		
BT-W009	4	0	0	0	0	0	0	0	0	0	0	0	0		0		
BT-W010	-		-	•										•			
BT-W013		-	•	•	•	•	•	•	•	•	•		•	•	•		
BT-W028	⊽ [,]		0	0	0	0	0	0	0	0	0	0	0	•	0		
BI-W029 BT-W031		-	- • •		•	•	•	•	-		_ ■ •			••	= •		1734 1734
Charleston Na	val									-	-		-		-		r
CN-W006	5		0	0	o	o	0	0	0	0	0	0	0	0	0		
Energy Tech																Γ	
ET-W020	<1 L		0	0	0	0	0	0	0	0	0	0	0	0			
Fernald																Γ	
FM-W005	Ţ					=											
FM-W013	<u>v</u>		0	0	0	01	0	0	0	0	0	0	0	0	0		
FIN-WI4				3	3												
FM-W018														0 [0		
FM-W025			10	0	0	0	10	10	10	10	10	1 0	1 0	30] c		
FM-W027	5		0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W041	4		0	0	0		0	0	0					0			
FM-W044	1 1	-	0	0	0	0	0	0	D	0	0	0	0				
FM-W046	v		0	0	0	۵	٥	0		0	0	0	0	0	0		
FM-W047								0		0	0	0	0	0	0		
FM-W050									0	0	0	0	0	0	0		
FM-W051	<u> </u>		0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W054	- -		0	-	0	0	0	0	0	0	•	0	0	0	0		

Page D-3

TRENCH

					A	rid							Humid		·····		
·····	Final		T		1	ŀ		[[[1		
	Volume				1				[1	[
MWIR ID	(m³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
FM-W055	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W069	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W075	<1																
FM-W076	<1																
FM-W089	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W094	<1				-		-								-		
FM-W104	<1		0					0		0							
FM-W107	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W114				●						2 .			•				U-238
FM-W115	<1																
FM-W117	S		pro 🕈 🔅	•		•						•					U-235, U-238
FM-W123	96	0		0	0	0	0	0	0	0	0	0	0	0	0		
FM-W125	2					•									p::::•		U-235
FM-W126	<1																· · · · · · · · · · · · · · · · · · ·
FM-W127	<1									0							
FM-W129	<1 ************************************								■								
FM-W130		12. 9 88															U-235, U-298
FM-W131	<1 ())))))))))))))))))))))))))))))))))))	0			0	O	0			0		0	O		0	000000000000000000000000000000000000000	
FM-W13Z									888 . 499					 ∞≈ ••∞			U-236, U-238
FM-W137	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-VV140	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-VV144	6	0	0	0	0	0	0	0	0	0	0		0	0	0		·
FM-W145	8	<u> </u>	0	0		0	0	0	<u> </u>	0	<u> </u>	0	0	0	<u> </u>		·
FM-VV146	<1						LI XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX									*****	10000100000000000000000000000000000000
FM-VVIA/															₩₩ ₽ ₩₩		U-235, U-235
FM-VV140	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u>u</u>		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		
PM-VVIDU																	
EM VAMES	·····																0-235, 0-238
FM-W156																	· · · · · · · · · · · · · · · · · · ·
FM AH 23																	
EM MARE																	U-235, 05238
EM-10/166	<pre>/************************************</pre>	198 - 1 98					**************************************			-322 - 25 2				8889 - 2023		8538888895.	G-430, U-230
FM-W/167	<u></u>																
FM-VAH 68												***					11.000
FM-W/171	<1	1991 - 1 992 - 1993 -			n 19 19 19 19 19 19 19 19 19 19 19 19 19			87966 7 7798	8882.27	- 300 x 7,9900		2007.709282 1	9735 3 79589	198809 - 1988		30000 (1 88 00)	9-400, 9-400
FNA-VAH 79							w.ē.w									0.000.0000	40-011 Acc. 11
FM-10/173	61		× •	•				- -			- -			90000 6 1 1 1			11335 (1238
EM-W/IR1		1233			÷			· .	139 🔓 🔬							2 19 Q 1 :	11-235 (16738
FM-W/185	16								888885 								
FM-W/187	11			-						0			-				
FM_W/188	4																
FM.W/191																	11235 11.238
FM-W192	<1 <	*****.52***** 1	20992CZ099283	ara 4000	nerse Robielie E	2003-1329 		5359903 76383 111			2007 755 7005			na n			

Table D-1. Comparison of Waste Stream Conce	entrations with the Estimated PE Concentration Limit	s for a Trench Disp	oosal Facility at 15 DOE Si	tes
---	--	---------------------	-----------------------------	-----

					A	rid							Humid				· ·
	Final																
	Volume						~~~										
MWIR ID	(m°)	LLNL	Hantord	NIS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
FM-W194				-										-		<u> </u>	
FM-W197												Ĭ					
FM-W198	2															****** ****	0-139,47-638
FM-W215	- 34	0	0	ō		0	0	0	0	0		0		0	0		
FM-W216	<1																······································
FM-W217		**			. e	•	•	İ 🗰 🎃									U-235 U-238
FM-W218	<1																
FM-W221	2			•	•	•		•			İ. e						U-235, U-238
FM-W224	2		ě	•	•	•	•	é.	•		•	•	•	•	•		U-235, U-258
FM-W225	<1	•	•	ė	•	•	•	•		÷.	•	•	•	•	. •		U-235, U-238
FM-W226	<1	•	•	•	•	•	•	•	•	1. S	•	•	•	•	•		U-236, U-238
FM-W227	<1		. •	•		•	•	•			• • • • • • • • • • • • • • • • • • •		. •	•	•		U-235, U-238
FM-W229	<1																
FM-W233	<1	<u> </u>		por 🕈 🗯		•	•			::::: ! :::::::::::::::::::::::::::::::	, <u> </u>	• • • • • • • • • • • • • • • • • • •				,	U-235, U-238
FM-W234	<1 ********																
FM-VV240	8		20												•		U-235, U-238
FM-VV241	1																U-235, U-238
FM-VV240	A1															I CONTRACTOR I	U-236, U-238
FM-VV244	4 **************	*****															
EM-W250	1	3000560388															0-235, 0-238
FMAA253																	
FM-W258				•	-									2			0-235, 0-236
FM-W262	~<1		•	•	é	•	÷	•	ē.		ē	ē	÷.	·			(1-235) (1-238)
FM-W264	<1				auseossee				200000-000-000-000-000-00							200000000000	
FM-W267	<1	. 🖬															
FM-W277	<1	0	0		0		0	0				0	0				
FM-W278	<1				۵			0	0				0				
FM-W279	<1				8												
FM-W280	<1	0	0	0	0	0	0	Ō	0	0	0	0	Ō	0	0		
FM-W282	81		•	•	•	(•	•	•			, •			•	. •		U-235, U-238
FM-W283	<1	0	0	0	0	0	0	0	0	0	0	<u> </u>	0	0	0		
FM-W284	<1						0	0					0	•		_	
FM-W285	<1	0	0	<u> </u>	0	0	0	0	<u> </u>	0		0	0	0	0		
FM-VV288	<1																
FM-VV289	<1					0	0		0					0			······································
FM-VV29/	<1	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			
EM.\A/219	<1 	-			-								-				
EM.10/327	<u>c1</u>										<u> </u>						
FM-W321	<1																
FM-W332	<1	0	0	-		-	0		-			0		-	-		
FM-W333	<1	ō	ŏ	ă -		- n	Ō	Ť	ň	- ă-	- ă-	Ū	ň				······
111-110000										-			<u> </u>		·····		

		Г		······	A	rid							Humid				
	Final		1		^	1	<u> </u>	1	1					1	1	r	
	Volume																
MWIR ID	(m³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
FM-W341	 <1		ဂုိစ်သည်	; ∷●≋≵	### • ###	, ●	•				•			•	•		U-235, U-238
FM-W351	<1															<u> </u>	
FM-W352	<1	<u> </u>	0	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0	0	0	0	0	0	0	<u> </u>	
FM-W353	<1													<u> </u>		<u> </u>	
FM-W354	<1	0							0	0	0	<u> </u>	0		0		
FM-VV300	<1	<u> </u>		<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
FM-10/357		<u> </u>														<u> </u>	
FM-W358		38 															11/222 11/224
FM-W365	e	•	•	•	÷.	•	•	ė	ē		÷.	Ā	•	÷.	ě		(1-235, 0-256
FM-W370	<1	•	•	•		•	•	•	ė.	•	•	•	•	•	è		16235 16238
FM-W379	<1																
FM-W380	<1															<u> </u>	
FM-W385	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	[
FM-W388	<1																-
FM-W400	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W402	<1																
FM-W403	<1		•	••••••••••••••••••••••••••••••••••••••	₽ ₩ 	~~ ! ~~	.			98. 9 .099					∤ ‱€∷	ÇC XXX	U-235, U-238
FM-W404	<1									<u> </u>							
FM-W4U/	<1		<u> </u>		<u> </u>	0	-0			0	0	<u> </u>	0	0		ļ	
FM-VV400																	
EM.VAUS	-1									200 0 0000]	U-225, U-238
FM-W412	<1																
FM-W418	<1	0	ō	ō	<u>-</u>	0	0	ō	0.	ō	0	0	ō	0			······································
INFI																	
IN-W005	<1					•				•			•	•		<u> </u>	
IN-W007	ે રાજ											ě 🎆		. e			Np-237, Am-241
IN-W008	<1	0	0	0	0	0	0	0	0	0	0	Ο	0	0	0	000000000000000000000000000000000000000	······································
IN-W035	2																
IN-W038	, st.		,	•	, •	•	•	•				٠	•		. • • · · ·		Am-241, Pu-238, Pu-239, Sr-90, U-234, U-235, U-238
IN-W047	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
IN-W050	<1			0 5000565555555555555555555555555555555			0		0				•				
IN-W057	S	\$.						•		338 2 4 10	•						C\$-137
IN-W058A	4			0	0	0	0	<u> </u>	0	- <u></u>	0	0	0	0	0		
IN-VVU61	<1 \$1											LI Li					
IN-VU02																	C6-137
IN-10077	1																
IN-W096	<1	0	ō	ō	0	0	0	0	ō	ō	0	0	0	0	-		
Knolle Sabe	nectody					_											
KA-MOO1	<1	0	0	0	0	0	0	ō	0	0	0		0	0	0		
KA-W005	<1	ō	0	Ō	ō	Ō	0	0	Ō	ō	ō	ŏ	ŏ	ō	ŏ		

0

					Δ	eld.											
	Et un at		r	1	<u> </u>		l	r					Humia	1	L	r	
	Volume														ļ		
MWIR ID	(m ²)	LLNL	Hanford	NTS	INFL	REETS	SNL		Panter		PGDP	FEMD	POPTE	088	epe	woo	
KA-W007	<1	n				-							PORIS			WYDP	
KA-W018			0		5	0		0	0								
KA-W020	2	ō	ō	ō	0	ŏ	<u> </u>	<u> </u>	ŏ	ŏ	0	- ŏ-			<u> </u>		
													- Ŭ	<u> </u>	<u> </u>		
Knolis Kes	selring				L						<u>-</u>				L	L	
NN-VV002	4	0		0	0	0	0		0	0	0	0	0	0	0		
LAN	L	,															
LA-W070	<1	0	0	0	0	•	0	0	0			•	٠	٠	•		
LA-W073	52													•	•		
LA-W074	<1	•	•	•	•	•	•		•		•		•	•	•		Am-241, Pu-238, Pu-239, U-238
LA-W075			¥ × • × ×		1280. 9 08		p:::: • • • • • • • • • • • • • • • • •				, 			per en a	. •		AF28, C-14, Sr-90, To-99, Th-232, U-232, U-238, Pu-240
LA-W076	<1	100600200066				•				•		• 2000200000000000000000000000000000000		•	•		VXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LA-W077	202 51 00									38 					•••••		H-3, U-235, U-238, Pu-299
LA-VVU/8	<1								0								
LANVUSS		195 2 88	708 - 68	8088. 7 988							1000 - 200						C-14, Tc-99
LA-VV004	3													•			
1 4-10080	55						-						-			<u> </u>	
1 4-10000	4	- ŏ	- ŏ	- O		- u	<u> </u>	- -	ŏ					<u> </u>	<u> </u>		
				<u> </u>						— <u> </u>	⊢ Ŭ −				⊢ Ŭ −		
LLN	L. 2000:22:20:00	17.022200000	 **************					0335633400000		******	 						
	15																H-3, C-14
LL-VWUZ	234					•					•			•			St-90, Ra-228
LL-VV004	89	•	•	•	• • •	•	• • •	•	•	•	•	•	•	•	•		232 U-232 U-233 U-234 U-235 U-238 No-237 Am-243
11-10005	11								000002000 ■.							I SECOND	
	74																Line Burringe
11.10007	15			8. * 8			. <u>.</u>										
LL-WOOR	÷.																Ra-220, 04230
LI-W009	<1	3099759999 		ineen±∞ee					alas antair							· · · · · · · · · · · · · · · · · · ·	
LL-W010	30		l i i i i i i i i i i i i i i i i i i i					k									S-00 Am-241
LL-W014	<i-< td=""><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td><td>•</td><td>•</td><td></td><td>•</td><td></td><td></td><td>. <u>.</u></td><td> .</td><td></td><td>H-3 Cu14 K-40 Co-137 11-238 Ptr-738</td></i-<>	•	•	•	•	•		•	•		•			. <u>.</u>	.		H-3 Cu14 K-40 Co-137 11-238 Ptr-738
LL-W015	15		•	•	•	•	•	•	•		÷.	•	•		. ÷		H.3
LL-W016	<1	•	•	•	•	•	•	•	•	•	•	•	•	•	ě		G-14 H-3
											X						G-14 K-40 Bic238 Th:232 (1-223 16/235 11-238
LL-W017	1	•	. •	•		•	•	•	•	- (• 7 %	•	•	•		•		Np-237, Am-241
LL-W023	58	· 🔳											•	•			
LL-W025	399		•	•	•	•		•	•		•	•	•		•		Pu-239, U-238
LL-W026	<1	0		0		•		0		•	٠	•	•	•	•		
Mour	ıd																
MD-W012	<1					٠		D			•	•	•	٠	٠		
Mare is	and																
MI-W004	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
MI-W008	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

•

					A	rid							Humid				
MWIR ID	Final Volume (m ³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide/=)
MI-W014	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Univ. of M	Issouri		I		<u>-</u>			 _									
MU-77001	_ <1							<u> </u>								<u> </u>	
Norfolk I	Naval		ļ		<u> </u>				· · · · · · · · · · · · · · · · · · ·								
NN-W003	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		:
NTS	3																
NT-W015	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
OPR (K-25	& Y-12)							_									
DB-WD02	94																IL MA
DP-W007	624					-29999 -29056092055				- 33753201686			399009903000966	•		000000000000000000000000000000000000000	
DP-W019	21467					•	٠			٠		•	•	٠	•		
DP-W140	928	•		•	•	•	•	•	• •	÷.	•	÷.	•	•	•		Np-237, To-99, Th-230, U-238
DP-W141	145																A 2 N A THE REPORT OF A CALCULAR AND A DRAWN AND A SERVICE AND CONTRACT AND AND A DRAWN AND A DRAWN AND A DRAWN
DP-W147	245	. Č	• • • • •	•	•	•	•	•	•		•	•	•	•	•		U-235
OP-W148	82	•	•	٠	<u>, 9</u>	•	•		•	•	•	•	•	•	•		U-235
YP-W005	8157													•	-		
Pearl Ha	arbor		1		Í., '										1	[
PH-W002	<1				0					Q					0		
PH-W007	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Portsmout	h Naval														ļ		
PN-W005	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Portemout	th GDP																
PO-W014	<1			0	0	•			0					•		<u> </u>	
PO-W017	49	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	<u> </u>	
PO-W018	61	i i i i i i i i i i i i i i i i i i i									•	•	•				Tc-99
PO-W019	<1	•	•	•	•	•	•	•	. •	•	•	•	•	•	•		U+234, U+235, U+238
PO-W022	<1	•	•	•	•	•	•	•	•	•	•	•	•	•	•		U-234, U-235, U-238
PO-W027	2	•	•	•	•	•	•		•	•	•	•	•	•	•		Te-99: U-234, U-235, U-238
PO-W028	, .			•			•							•		,	To-99, LI-254
PO-W032	4	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	0	0	0	0	0	0	ļ	
PO-W039A	2360				<u> </u>	•								•			
PO-W040	<1															<u> </u>	······································
PO-W044	<1																
PO-VV046	21	- H		0				0	- H	- H		- H			- H	·	
00-14/062	21																1,000
PO-M057	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>				00000. 3 09388	00000000000		xxx:0:.≅:0000 ■						00000 70 0008			
POLADS							é										To 09 Th 231
PO-W069	194	O A		O	0			Ō	0 0		Ō						
PO-W072							ē										Te 99, U-234, U-235, U-238
PO-W073	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	x. shidunderwandobunanananananananananananananananananana

TRENCH

.

					A	rid							Humid				
MWIR ID	Finat Volume (m ³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
Puget Sc	hund																
PS-W004	<1																
PS-W006	1	-	-	0										0			
PS-W012	3	0	- ö-	0	10	ō	<u> </u>	0	ŏ	ŏ	0	ŏ	ŏ	ŏ	- ŏ-		
PS-W018	<1	ō	ō	0	ō	ō	0	ŏ	ŏ	ŏ	ō	0	ŏ	ŏ	ŏ		
Pante																	
PX-W010	26	0	0	0	0		0	0	0								
PX-W025	36	0	ō	0	ō		ō	ō	ō							+	
PX-W027	4	0	0	Ō	0		Ō	0	ō		ō					<u> </u>	
PX-W028	5	0	0	0	0	0	0	0	Ō		0	ō		0			
Rocky F	lats																
RF-W003	143																······································
RF-W006	1155													•	•	1	
RF-W017			í X 🌒 🖉	•		i e e e e e e e e e e e e e e e e e e e					•	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		i i i i i i i i i i i i i i i i i i i			Pu-239 Pu-240
RF-W018	8562													•	•		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RF-W019	5177	0	0	0	0	0	0	0	0	0	0	0	0			1	
RF-W024	36	•		•	•	•	•	•				•	•	۲	ê		Pu-239, Pu-240
RF-W025	<1	•	•	•	•	•	84. è 🔬		•	•	•	•	•	•	•		Pti-239, Pti-240
RF-W027	2		•	6	•	•	•	•	•	é.	•	•	•	•	•		Pu-239, Pu-240
RF-W030	47	•	•	•	•		•		•	•	•	•	•	• : :	•		Pu-239, Pu-240
RF-W031	17		•	•	•	•	•		•	•	•	•	•	•	•		Pu-239, Pu-240
RF-1/035	2	•	exerci 🌰 eres	•	•	•	•	•			•	•	•	•	•		Pu-239, Pu-240
RF-W042	4	•	•	•	•	•	•	•	opte spin zore i i		•	•	•	•			Pu-239 Pu-240
RF-W043 .	30		•	•	•	• • • •	•	•	•	8 6 6	• •	•	•	•	•		Pu-239 Pu-240
RF-W045	8	•	•	•	•	•	•	•	•		•	•	•	÷.	•		Pu-239, Pu-240
RF-W046	<1	•	•	•	•	•	•	•	•	•	•	•	é 🔅		•		Pu-239 Pu-240
RF-W047	<1	•	•	•	•	•	•	•		. ě.,	•	•	•	•	•		Pu-238 Pu-240
RF-W049	<1		•	•	•	•	•	•	82. . .		•	•	•	•	•		Pu-239 Pu-240
RF-W050	1267	•	•	• •	8 . .	•	•	•	\$26 • ()	•	é	•	•	•	•		Pu-239, Pu-240
RF-W062	<1	•	•	•	•	•	•	•	•	•		•	•	•	•		Pt+238 Pt+240
RF-W071	254	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		Pu-239 Pu-240
RF-W074	10	•		•	•	•	•	•	•	÷.	•	•	•	•	•		Pu-239, Pu-240
Hanfo	rd															1	
RL-W019	2					٠				٠		٠	٠	٠	٠	1	· · · · · · · · · · · · · · · · · · ·
RL-W020	121					•				•		•	٠	•	٠		
RL-W023	17					٠				٠	٠	٠	•	٠	٠		
RL-W024	6					•				•		•	٠	٠	٠		
RL-W025	4					•				٠		•	•	٠	•		
RL-W026	81					•				•		٠	٠	٠	٠		
RL-W028	5					•				•		٠	•	٠	٠		
RL-W030	11					•				•	•	٠	•	•	٠		
RL-W032	14					•				•		٠	•	٠	•	1	

٠

					A	rid							Humid				
····	Final		1		<u> </u>		[[<u> </u>				riumiu	l	T	r	·
	Volume		1 1						1.								
MWIR ID	(m ³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	wwnp	Controlling Nuclide/s)
RL-W033	<1					•				•	•	•	•				Controlling Huchders
RL-W036	14					•				•	•	•	•	•			
R1-W037	56	0		0				ō	ō					•			
RL-W041	13	Ť				•						•		•			
RI-W042	8				Ē									•			
RI-W046	12																
RL-W049	115			0		•				•		•	•	•			
RL-W050	4					•		0		•		•	•	•	•		
RL-W051	<1	0		8		•				•		•	•	•	•	<u> </u>	······································
RL-W052	3													•		·····	
RL-W053	2							-						•			
RL-W054	27					•				•		•	•	•	•		······································
RL-W055	47					٠				•	٠	٠	•	•	•		······································
RL-W056	83													•	•		
RL-W057	439	· 🔳				٠				•		•	٠	•	•		
RL-W058	13			-		•	-			•		•	•	•	•		
RL-W059	6					•	- 10	· 🚛		٠	٠	•	٠	•			
RL-W060	34					٠				•		٠	•	•	•		
RL-W061	1											-		•			
RL-W062	2		•			٠				•	•	٠	•	•	•		
RL-W063	4									-		- -		•		ł	
RL-W064	39				Ű	M								•			
RL-W065	32				-									•			
RL-W066	10													•			
RL-W067	<1								■ -					•			
RL-W068	589	•	6. 6	•	•	•	•	•	•	6865 Q .: X	•	•	•	•	•		U-254, U-235
RL-W069	1191				<u>**•*</u>								•				U-234, U-235
RL-W087	17					•				•		•	•	•	•		· · · · · · · · · · · · · · · · · · ·
RL-W092	<1													٠	•		
RL-W093	16				. 🗰	•				•	•	•	•	•	•		
RL-W094	108	00000000000000000000000000000000000000				•	 30535-05350070			000000000000000000000000000000000000000		•	• 				CONTRACTOR STOCKED CONTRACTOR STOCKED CONTRACTOR STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED STOCKED
RL-W095	204	98 9 88						•							•		Cs-137, 5H-90
RL-W097	11					•				•		•	•	•	•		
RL-W098	26									•				•	•		
RL-W099	<1													•			
RL-W100	36													•			
RL-W113	8					•				•	•	•	•	•	•		
KL-W114	2					•						•		•	•		
RL-W115	1		-			-						•		•	•		
RL-W116	2					•					_	•	•	•	•		·····
RL-W117	<1													•	•		
RL-VV118				-		-								•	•		
RL-W119	<1	<u> </u>						<u> </u>							•		
KL-VV122	31	<u> </u>				•		u	L	•		•	•	•	•		

					A	riđ							Humid				1
	Final							[1				
	Volume			-													
MWIR ID	(m³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
RL-W124	3				H	•				•		۲	•	•	٠		
RL-W126	<1					•				•		•	•	•	٠		
RL-W127	1					•				•		•	•	۲	٠		
RL-W128	<1					•				•		۲	•	۲	•		
RL-W129	<1					٠				٠	•	٠	•	۲	•		
RL-W130	3													•			
RL-W131	<1					•				•		•	•	۲	۲		
RL-W132	2													٠			
RL-W140	196					•				٠		•	•	٠	٠		
RL-W141	15					•			· 🔳	•		•	•	۲	•		· · · · · · · · · · · · · · · · · · ·
RL-W142	3136					•				•		٠	•	•	•		
RL-W143	<1													٠			
RL-W144	<1													٠			
RL-W146	<1	•				•				•		٠	•	•	•		
RL-W149	<1					•				•		•	•	•	•		
RL-W150	<1					•				•		•	•	•	•		
RL-W151	<1					•				•		٠	•	٠	•		
RL-W152	<1	8	•			٠				•	٠	٠	•	•	•		
RL-W153	<1					•		0	۵	•		۲	•	•	٠		
RL-W170	1	0		0	0				0		0			•			
RL-W173	<1	0		0	0		0	0	0					•			
RL-W174	8	0	0	0	0	<u> </u>	0	0	0			0		•			·
RL-W175	4	0	0	0	0		0	0	0		0			· •			
RL-W176	3	0			<u> </u>				0					•			
RL-W177	18								0	0						· · ·	
RL-W180	<1				<u> </u>									•			
RL-W181	<1													•	•		· · · · · · · · · · · · · · · · · · ·
RL-W182	14													•	•		· · · · · · · · · · · · · · · · · · ·
RL-W184	22			0							<u> </u>			•	•		
RL-W185	262							<u> </u>				0		•	•		
RL-W186	406											0		•			
RL-W187	33					<u> </u>		<u> </u>		<u> </u>			<u> </u>	•	•		
RL-W188	106			<u> </u>				<u> </u>	<u> </u>			<u> </u>		•	•		
RL-W189	734				<u> </u>				0					•	•		
RL-W190	32	<u> </u>	0		<u> </u>									•	•		
RL-W192	<1			<u> </u>			0							•			
RL-W196	3					•				•		•	•	•	•		
RL-W197	6			0	<u> </u>	•				•		•	•	•	•		
KL-W199	<1	<u> </u>			<u> </u>	•	0			•		•	•	•	•		
KL-W200	28	0		<u> </u>	<u> </u>	•	-	<u> </u>	<u> </u>					•	•		
RL-W201	<1					•				•		•	•	•	•		
RL-W202	2			<u> </u>		•	0	<u> </u>		•	-	•	•	•	•		·
KL-W203	1					•				•		•	•	•	•		
RL-W205	1					•				•		•	•	•	•		

.

.

					A	rict							Humid				
	Final Volume		Uniford		ikiel	DEETE	Chil		Dentey	A. 111 27							
PI MPAG	(m) 1			M13		RFEIS		I TI	rantex	ANLE	PGUP	FEMP	PORTS	ORR	SKS	WVDP	Controlling Nuclide(s)
RL-W200	55			<u> </u>													· · · · · · · · · · · · · · · · · · ·
RL-W200	<1	- m		— <u> </u>	<u> </u>			- Ă	- ř								
RI-W210	28			-		•						•					
RI-W211	25					•	-			•		•		•			
RL-W215	8	0			0									•		<u> </u>	
RL-W216	3	0		0	0				0								
RL-W217	11	0	0	0	0	•	a	0	0	•			•	•			
RL-W226	123					•				•			. •	•	•		······································
RL-W227	<1	۵		0		•				٠		٠	•	٠	٠		
RL-W228	19					•				•		٠	•	۲	۲		
RL-W231	42					0								•	٠		
RL-W232	29													٠			
RL-W233	25													•	•	*****	
RL-W234	72			••••	••••	•					•			•	•		C-14, NF63
Savannah	River														ĺ		
SR-W001	<1				1								•	•	•		
SR-W003	<1	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0		·
SR-W004	80	0		0	0	0	0	0	0	0	0		۵	۵	۵		
SR-W005	1	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠		"U-234, U-235, U-236, U-238
SR-W009	13	520 C	¥3320 € 22	• • • • • • • • • • • • • • • •	80.2 .9 .878		200 🕈 🖓	ja de la composition de la composition de la composition de la composition de la composition de la composition		. 		•	• • • • • • • • • • • • • • • • • • •	•			Ca-137, (-129
SR-W015	21	•	• •	•	•	•	•	•	•	•	•	•	•	•		······	
SR-W018	14						••••••••••••••••••••••••••••••••••••••								000000000000000000000000000000000000000	000000000000000000000000000000000000000	\$\$5300000000000000000000000000000000000
SR-W029							888 - 199			1000 9 .0000							U-234, U-235, U-238
SR-WU31	<1 *********									-332.7 X -2008				•****** * ******			
SR-WU37	146						2					2 2 2					U-234, U-236, U-238
SR-WUSO																	U-234, U-235; U-238
GD 14039																	
SP.MAA7	37			× 2													68-13/
SRIMOGO	0 1			4											2.		65-13/ Lia
SR-W069	89	0	Ō	0	Ō	Ö	0	0 0	Ö	олано О	0	0	o I	0	Ö	78888888888888888888888888888888888888	C•-2
West Va	alley										-	-					
WV-W019	<1				a					Q	Ö			•	٠	0	

Table D-1. Comparison of Waste Stream Concentrations with the Estimated PE Concentration Limits for a Trench Disposal Facility at 15 DOE Sites

.

		Contro illing Nuclid eis)						Re-28 Th 282 An 241	na na na na na na na na na na na na na n											0.234, U236, U.238																					
		AQ/W																																							
		SRS		D	D	0	•	•	0				D		0		•	0			0	•	L	0		0			0		0	0	0	0	0	٥	0	0	٥	0	>
		ORR		•		•	•	•	0						0		•	•	•		•	•		0		0			0	٥	0		0	0		٥	٥		D	00	כ
	PimnH	PORTS			a	D	•		0				0		0		•	0		•	0	-		0		0			0	D	0		0	0		0	0	D	0	00	כ
		FEMP			۵	0	•	•	0		0		0		0		•	0		•	0			0		0			0		0		0	0	0	0	٥			00	2
		PGDP		D	0	0	•	•	0				0		0		•	0		•	0	•		0		0			0		0		0	0		0	٥			00	>
		ANLE		a	a	a		•	0		0		0		0		•	0	=	•	0	•		0		0			0		0		0	0		0	0			00	2
ſ		Pantex		0	٥	0			0		0		0		0		0	0			0	•		0		0			0		0		0	0		۵	0			00	>
		LANL				0		•	0		0		0		0		0	0		•	0	•		0		0			0		0		0	0	0	0				0	>
		SNL		۵	D	0	-	•	0		0		0		0		0	0		•	0	•		0		0			0		0		0	0	٥		٥	D		0	כ
		RFETS		0	0		•	•	0		D		0		0		•	0	-	•	0	•		0		0			0		0		0	0	0	0	٥	0		0	כ
ľ	•	INEL		0	٥	0		٠	0		0		0		0		•	0		٠	0	•		0		0			0		0		0	0	0	0	٥	0		0	2
		NTS		0	0	0	=	٠	0		0		0		0		0	0		•	0			0		0			0		0		0	0	D		0	D	٥	00	כ
		Hanford		0	0	0		•	0		0		0		0		•	0			0	•		0		0			0		0		0	0		•	D	0		00	כ
		LLNL		0		0	•	•	0		0		0		0		0	0			0	•		0		0			0		0		0	0		0	0		٥	0	2
		Final Volume (m ³)	t East	119	2	10	35	9	<1	West	4	lumbus	₽	aven	<1	s	⊽	5	₽ V		⊽	₽ ₽	n Naval	۶	Tech	۶	pli	۲	⊽	₽	⊽	5	⊽	⊽	¥	₽	⊽	₽	⊽	v 1	-
		MWIR ID	Argonne	AE-W015	AE-W023	AE-W026	AE-W033	AE-W035	AE-W044	Argonne	AW-W009	Batelle Co	BC-W002	Brookh	BN-W004	Bett	BT-W007	BT-W009	BT-W010	BT-W013	BT-W028	BT-W029 BT-W031	Charlesto	CN-W006	Energy	ET-W020	Ferna	FM-W05	FM-W013	FM-W014	FM-W019	FM-W023	FM-W025	FM-W027	FM-W041	FM-W044	FM-W046	FM-W047	FM-W050	FM-W051	HCONA-WI

Page D-13

TUMULUS

	1				1	Arid							Humid				
MWIR ID	Final Volume (m ³)	LINE	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex		PGDP	EEMP	PORTS	OPR	SPE	140/DP	
CM-IADS5	1 <u>e1</u>					+		1 0					- OKIG			WVDF	
FM-MOSS	1-21	H d	+'	+ ~	1-ŏ-	+	+ ŏ-	1-0-	+ ŏ	<u> </u>	+	+	+ ~	+		+	
FM-WOOS					<u> </u>			+								+	
FM-WUID	S																
FM-WU/b	<1															<u> </u>	
FM-W089	<1	<u> </u>		0			<u> </u>		<u> </u>	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>	0		
FM-W094	<1						<u> </u>									4	
FM-W104	<1		<u> </u>		<u> </u>						<u> </u>		0	0		1	
FM-W107	<1	0			0.		0	0	0	0	0	0	0	0	0	~~~~~~~	
FM-W114	, *1 *1	- 18 D. 18	480 <u>9</u> 007	(MA)	, 100 9 007		âi e e e e e e e e e e e e e e e e e e e	\$M. D. W				\$88 .		ANNE IS	i de la compacta de l	Ç.	U-238
FM-W115	<1															AN AN AN AN AN AN AN AN AN AN AN AN AN A	
FM-W117	ং শ			<u> </u>		AND (1)		400 • 000				, a chairte a ch			<u>in en </u>		U-236, U-238
FM-W123	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W125	2				<u>a se en e</u>))) • · · ·										Ú-235
FM-W126	<1															T	
FM-W127	<1					0				0							
FM-W129	<1					-		-								1	
FM-W130	ÁNNE I K														in the second second		U-235, U-238
FM-W131	<1	O	0	0	0	0	0	0	0	000000000000000000000000000000000000000	0	0	0	0	0	\$188888886100000C	1. A 2000 0000000000000000000000000000000
FM-W132																	U-235 U-238
FM-W137	1	Contractor and Contractor	10	000000000000000000000000000000000000000	0	0	O CONTRACTOR	0	10	0	10	1 o	0	0	1 o	2220222555555555	
FM-W140	<1	0	0	ō	ō	0	0	ō	ō	0	ō	0	0	0	ō		· · · · · · · · · · · · · · · · · · ·
FM-W144	6	ō	0	ō	o	0	ō	ō	ō	0	ō	to	1 o	10	o	1	
FM-W145	8	0	+ 0	ō	t õ	10	ō	1 ō	ō	ō	10	t o	1 ō	10	10	1	
FM-W146					- i	1 <u> </u>		<u>– </u>		1	- ā	+ <u> </u>		- ā	+ ă		
ENANA 47																	
EMANA/1 AR	A11111		A333337372222			A										20000000000000000000000000000000000000	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
EM-14/150	+	1		- -	- -		<u>-</u>					+	+	+- <u>H</u>	+ -		
ELA VALEA																	LI MARE LI MARE
CINE VALLED				ANN ANN		\$1005000				9887 . 888					4880 - 389	f in the second	U*233, U*235
FM-VV130								+									······································
FM-W161	<1	AT CARGOSTAN						882234663239683						3000.000000000000000000000000000000000			
FM-WI62	AN 51																U-235, U-238
FM-VV100	488 S	100 - 1 00	488 5 700	\$100 		AND THE	\$190 - 197			1980 - 2084	\$100 7 100				### \$###	{**** *******	U+235; U+238
FM-W166	<1								'					-		·	
FM-W167	<1	*******	004234232552555	AMAGAAAAAGGGGGGGG	××××××××××××××××××××××××××××××××××××××	000333833823800			200000000000000000000000000000000000000		00420323322332332					******	
FM-W168	\$ \$\$ \$1		, in the second	Aliante de la companya de la companya de la companya de la companya de la companya de la companya de la company A companya de la comp	\$100 - 107	, and the second second second second second second second second second second second second second second se	480 • 34	AMO M	Alle S aci		ANG N	\$100 . }		\$80 • M	\$\$\$\$. \$\$		U-236, U-238
FM-W171	<1															1	
FM-W172	্ৰ '						di e di										U-235, U-238
FM-W173	 *1 '												200 9 77			â a a a a a a a a a a a a a a a a a a a	U-235, U-238
FM-W181	<1							199 0						200 è 779			U-235, U-238
FM-W185	16				۵											COOL SUBJECT OF	CANALARY COLUMN 100000 HERBER DEFENSION NOT HAVE A CHARTER CHARTER CHARTER CHARTER COLUMN COLUMN CANALARY STUDIES COLU
FM-W187	11						0		0	0			0		0	,	
FM-W188	4																
FM-W191																	U-235 U-238
FM-W192	<1		\$33399337	683639 85876 5677 			69999313527 dises.	2/12229/22239/200	olorio Mariana	- 7139/1964-522000	20000000000000000000000000000000000000	(1997): Santares 111		89909000000000	Kernen der der der der der der der der der der	11228/1928	A A A A A A A A A A A A A A A A A A A

Page D-14

TUMULUS
Disposal Facility at 15 DOE Sites		Controlling Nuclidade
mulus		- dQVW
or a Tu		SRS
mits fo		ORR
tion Li	Humld	PORTS
ncentra		FEMP
PE Co		ADP
imated		ANLE
the Est		Pantex
s with		LANL
ntration		SNL
Concer	Id	RFETS
Stream	Ar	INEL
Waste !		NTS
son of		Hanford
mparis		LLNL
D-2. Co		Final Volume (m ³)
Table l		WIR ID

					A	Þ	Ī						Humld				
	Final											- 					
MWIR ID	(m [*])	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	PUDP	Controlling Nuclide(s)
FM-W194	ţ,			-				-								Ī	
FM-W196	₹	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FW-W197	V	•	•	•	•	•	•	•	•	•	•	•	•	•	•		0236 0236
FM-W198	2	•	0	0	0		•	•	0	0		0	٥	0	0		A A A A A A A A A A A A A A A A A A A
FM-W215	34	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W216	4						1		-								
TISW-ME	2	•	•	•	•	٠	•	•	•	•	•			•	۲		0.225,0.236
FM-W218	₽	•		•			•			-							OD ALL SAN AND AND AND AND AND AND AND AND AND A
FM-W221	~ ~	•	• •	• •	• (•	• •	• •	•	• •	• •	• •	•	•	• •		U236, U 236
F.MW224	N 1	•	•	•	•	• •	• •	• •	•	• •	• •	•	•	•	•		U.238, U.238
C22W-M-	ç :	•	•	• •	• •	•	•	• •	• •	•	•	• 1	• •	•	• •		0.236,0.236
07774-W1	v 1		• •	• •	• •	• •	• •	•	•	• •	•	• •	• •	• •	• •		U-256, U-238
)) 						Ur225, Ur236
FM-W229	•										-						
)		• 1			•	•	•		•			U 235, U 238
FM-W234	₽												0				
FM-W240	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•		U236(U238
FM-W241	Ŧ	•	•	•	•	•	•	•	•	•	•	•	•	•	•		U 256 U 256
CH2W-H1	10		•	•	•	•	•	•	•	•	•	•	•	•	•		U236, U236
FM-W244	41														•		
FM-W247	v			•	•		•	•	•	•	•	•	•	•	•		V 235, U 238
FM-W250	⊽				•										=		
FM-W253	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•		0.235,0.235
FM-W258	¥ .	• •	•	• •	• :	• •	• ·	•	•	• •	•	•	•	•	•		0.235, 0.238
FM-W262	7	•	• 1	•	• 1	• 1	• 1	• 1	•	• 1	• 1	•	• •	•	•		0.236, 0.238
FM-W264	5						■	■	■		■╎	┉╎	╸		■		
FM-W267	₽					■	■			╸┼							
FM-W277	⊽							┏╽									
FM-W2/8	•								╸								
FM-W279	⊽										■	■	■				
FM-W280	↓	0	0	0	- 0	•	- 0	- 0	0	0.00			- 0		0	TARKOOODER 20.	a da da de secondo de la compañsión de secondo de secondo de secondo de secondo de secondo de secondo de se un
-M-W282	5		•	•	•	•	•	•		•		•	•	•	•		U235, U238
FM-W263	5	oli	oli	bl	oli	0	oli	0	o	0	-+ 0 1	0	0	0	0		
FM-W284	5	3												•			
C82W-M1	•	S	Э	S	5	5	Э	5	b	- D	- >	0	0	0	0		
FM-W288	⊽																
FM-W289	⊽	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W297	¥	a	0				D	0	0	0			0	0			
FM-W301	r	•								•			=				
FM-W318	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W327	v									=							
FM-W330	⊽								=				-				
FM-W332	⊽	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
FM-W333	Ŷ		┛	-						-			-				
										Page [-15						TUMULI

TUMULUS

-	·····	-		-	-	_		-				-	-	-			-		_		-		_	_			-	-					-	-	-	-	-	-	-	-
	Controlling Nuclidets)	10201 SEC 01							0.236,0-238	(L238,U-238	U-235,U-239							U.236, U.238				U-235, U-236						Np.237, Am.241			Am 241, Pu 238, Pu 239, St-80, U 234, U 235, U 236						Ca-137	B) Constraints and a state of the state o		
	- dow											_																					-					Contraction of the second second second second second second second second second second second second second s		
	SRS	• •	0	٥	0	٥			٠	•	•			0		0			0	0			•	٥	0				0		•	0			0	0	•		0	0
	ORR	• =	0	٥	0	٥	0	=	•	•	•	D		0		0		•	0	o		٠	٥	٥	o		•	۲	0			0	•	•	0	•	•	0	-	0
PIMUH	PORTS	• =	0	٥	0		0		•	•	•			0	=	0			٥	0		•	٥	0	0			•	0			0		•	0	٥	•		٥	0
	FEMP	• •	0	0	0	٥	•			•	•		-	0		0			٥	0		•	٥	0	0				0			0		•	0	0			0	0
	PGDP	• •	0	0	0	0	0			•	•			0		0			0	0		•	0	0	0			•	0		•	0		•	0	0	•		0	0
	ANLE	• •	0	٥	0	0	0		•	•	•			0		0			0	0		•	0	0	0				0			0	0	•	0	0			0	0
	Pantex	• =	0	0	0		0		•	•				0		0	=		۵	0		•	٥	0	0				0			0	0	•	0	0		0	0	0
	LANL	• =	0	D	0	0	0	-	•	•	• !	0	•	0		0		•	0	0			٥	٥	0			•	0		•	0	0	•	0		•		0	0
	SNL	• •	0	0	0	0	0		•	•	• 1			0		0			D	0		•	0	0	0	·		•	0		•	0	0	•	0	0			0	0
	RFETS	• =	0	0	0	0	0		•	•	•			0		0			0	0		•	0	0	0				•			0	•	•	0	0	•	0		0
Arl	INEL	• =	0	0	0	0			•	•	•		=	0		0			0	0		•	0	0	0			•	0		•	0	0	•	0	0			0	0
	NTS	• =	0	٥	0	0	0		•	•	•	0		0		0			0	0		•	٥		0			•	0			0	0	•	0	D	•	0		0
	Hanford	• =	0	0	0			-	•	•	•	0		0		0			0	0		•	•	0	0				0			0	0	•	0	0		0	0	0
	- L L L	• •	0	0	0	۵	0		•	•	•	0		0		0	-			0			0		0			•	0			0	0	•	0			0	0	0
	Final Volume (m³)	⊽ ⊽	¥	Ł	₽ V	¥	¥	v	č1	2	V	¥	₹	¥	¥	₽	v	12	Ł	¥	₽	1	Ł	₹.	۰.		£	ł	₽	2	1 2	£	¥	r	4	₽ ₽	12	Ţ.	Þ	v
	MWIR ID	FM-W341 FM-W351	FM-W352	FM-W353	FM-W354	FM-W355	FM-W356	FM-W357	FM-W358	FM-W365	FM-W370	FM-W379	FM-W380	FM-W385	FM-W388	FM-W400	FM-W402	FM-W403	FM-W404	FM-W407	FM-W408	FM-W409	FM-W410	FM-W412	FM-W418	INEL	1N-W005	100-W	IN-W008	1N-W035	IN-W038	IN-W047	1N-W050	10-W057	IN-W058A	IN-W061	IN-WO62	IN-W077	1N-W089	1N-W096

														U-238, Pu-240	80000000000000000000000000000000000000	8									R#-226,Th-232	C'LANCER WILLING					9' U-238			M (252-11)			
		HING NUCIIDE(S)											, Pu-239, U-236	0,Th-232,U-252	100000000000000000000000000000000000000	5, U-238, Pu-2		14, To-00						90, Ra-228	Ce 137, Pu-238,	67-du'0077-n'0		228 U-238		30, Am-241	Cs-137, Pu-23		11 F	86, U-238, Am-2 7, Pu-230		36, Pu-230	
		Control											Am 241	0-14, S-90, 1-0		H3, U23	220000000000000000000000000000000000000	5						ð	40, 51, 50, To 99,			4. · ·		Š	014 H3 K40	000000000000000000000000000000000000000		40, U-233, U-2 23		U.2	
														A126(000000000000000000000000000000000000000								C.L.K.							0.0000000000000000000000000000000000000		2 E			
						 																				8 				-						8 -	
		ey N	0	0	D	0	0		0		0		•	• (с —	• ()				0			•	•	•		• •	₿ ∎	•	•		•	•	•	•	•
			0	0		0	0		0		٥	•	•	•		•]		•	0	0		•	•	•	•	•	••	-	•	•		•	•		•	•
Humb		e IND	0	0	D	0	o		0		0		•	• 1		• (=	0	0		•	•	•	•	•	• •		•	•	•	•	•	•	•	•
	9		0	0		0	0		0		0	•	•	• 1		• (0	0		•	•	•	•	•	• •		•	•	•	•	•		•	•
			0	0	0	0	0		0		0		•	• •		• (0	0		•	•	•	•	•	• •		•	•	•	•	•	•	•	
		JULE	0	0		0	o		0		0		•	•		• (,	0	0		•	•	•	-	•	• •		•	•		•	•		•	۵
	Date:		0	0	0	0	0		0		0	-	•	• . 1		•	,			0	0		•	•	•		•	• •		•	•: (•	•	•		• 1	•
		Ĭ	0	0	D	0	0		o		0		•	• 1		• (•		0	0		•	•	•	-	•	• •		•	•	•	•	•		•:	0
	Ĩ		o	0	0	0	0		o		0		•	•		• (0	0		•	•	٠	-	•	• •		•	•	•	•	•		•	0
þ	U U U		0	0	0	0	0		0		0	=	•	• 1		• (- -				0		•	•	•	•	•	• •		•	•	•	•	•		•	•
Ā	Ū		0	0	0	0	0		0		0		•	•		• •		•		0	0		•	•	٠	•	•	• •		•	• (•	•		•	
	STN STN	2	0	0		0	o		o		0		•	• •		• (0	0		•	•	٠		•	• •		•	• (•	•	•		•1	0
	, in the second s		0	0		0	o		0		0		•	•		•		•		0	0		•	•	•	•	•	• •		•	•	•	•	•		•	0
	Ĩ		0	0	0	0	0		0		0	=	٠	•						0	0		•	•	•		•	• •		•	•		•	•			
	Final Volume	mectady	₽	Þ	۲	۲.	2	selring	4		₽	52	2	5	1	7		7~	o 0	55	4	_	15	254	8	11	79	9 T	₹ V	8	Ę,	15	7	P	58	399	v
		Knolis Sche	KA-W001	KA-W005	KA-W007	KA-W018	KA-W020	Knolls Kes	KK-W002	LAN	LA-W070	LA-W073	LA-W074	C/0M-V1					A-W088	LA-W089	LA-W090	ILLN	LL-W001	LL-W002	LL-MOOM	LL-W005	LL-W006	LL-W007	11-W009	LL-W010	ELEVOIA	LL-W015	LL-W016	LL-WOI7	LL-W023	LL-W025	LL-W026

r

Page D-17

TUMULUS

					A	rid							Humld				
MWIR ID	Final Volume (m ³)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
Mour	nd																
MD-W012	<1	0		۵		0		0			0	۵			0		
Mara la	land																
Mare IS				0			0	0	0	0	0	0	0	0	0		
MI-VVU04		0		0	0	0				<u>ŏ</u>	0	0	- ŏ	0	ŏ		4
MI-10/014	13	0	ŏ	õ	1 ŏ	ŏ	ō	ō	ō	ō	õ	Ō	ō	ō	ō		
		<u> </u>			<u> </u>								-				
Univ. of M	issouri		<u> </u>														
MU-W001	<1														-		
Norfolk	Naval																
NN-W003	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		· · · · · · · · · · · · · · · · · · ·
NTS	5																
NT-W015	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
OPP (K-25	£ V-42)																
DP-M002													•				U-235
DP-W007	624								20000000000000000			•••••••••		•		000000000000000000000000000000000000000	
DP-W019	21467					•	•			•		٠	•	•	•		· · · · · · · · · · · · · · · · · · ·
0P-W140	928	::: : ::::::::::::::::::::::::::::::::			•							e e e e e e e e e e e e e e e e e e e	•		÷.		To-99, Np-237, Th-230
DP-W141	145															I	
DP-W147	245			•	• •	•	•	•	•	•	•	•	• •	•	•		U-236
DP-W148	82		•	•	•	•	•	•	•	٠	•		. •		•		U-295
YP-W005	8157								1 .					•			
Pearl H	arbor								1								
PH-W002	<1	0					D	0	0	. 🗖	D	D	D		0		
PH-W007	<1	0	0	0	0	Ō	0	0	0	0	0	0	0	0	0		
Portemout	th Noval				1												
PN-W005	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
							1							1			
Portsmou	th GDP	<u> </u>	-	-	- m -			-								<u> </u>	and the second second second second second second second second second second second second second second second
PO-W014	<1	<u> </u>							3	0	0	-	-	-	0		
	43						Ĭ	l č				Ĭ					Te-99
	≈ 9.1×××											•	••••••	•••••••	8799999756 20069 •	600060 2000 000	
DO 14000																	U-254 (J-235 U-238
PO-W022	·		÷.			•	. .		•			•	•		Te-99, U-234, U-235, U-236
PO-MAD28	41		è	÷	•		•				é 🏼	•	•	•	•		Tp-99, U-234
PO-W032	20000000000000 4	0	0	l o	0	0	0	0	0	0	0	0	0	0	0		
PO-W039A	2360	ā													٠		
PO-W040	<1																·
PO-W044	<1																
PO-W046	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
PO-W047	21										•	٠	٠	•	۲		

.

i																	
·····					A	\rid					r	•·····	Humid		•		
MWIR ID	Final Volume (m ²)	LLNL	Hanford	NTS	INEL	RFETS	SNL	LANL	Pantex	ANLE	PGDP	FEMP	PORTS	ORR	SRS	WVDP	Controlling Nuclide(s)
PO-W053	<1	280 X		•	•			•	•	8 3 0 1 1	•	•	•		•		Te-99 (J-234
PO-W057	<1			D		•		0		•			•	• • • • • • • • • • • • • • • • • • • •	•	000000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PO-W058	<1 ×	. × ě	*** • *	•	\$\$\$\$ `	•	* ***	• •		188 Ö 1888	e é é é	•					Tc-98, Th-230
PO-W069	194	0	0	0	0		0	0	0		0	0				2202022222222	
PO-W072	<1		•	Š		•		•	i i i i i i i i i i i i i i i i i i i		e e	•					To-99, U-234, U-236
PO-W073	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000000000000	
Dunat S	ound		Ţ					Ī						1			
PS-W004	<1 <1				- m				m								· · · · · · · · · · · · · · · · · · ·
PS-W004	1					1-0-					<u> </u>						
PS-W012		ŏ	1 č	<u> </u>	<u>ا</u> م	<u> </u>	- ŏ-	<u>ا</u> م	- č	- Č	- ŏ-	<u> </u>	<u> </u>	<u> </u>			
PS-W012	1	ŏ				- ŏ	- ŏ-	-ŏ-	- ŏ	-ŏ-				<u> </u>		<u> </u>	
10-11010		— <u> </u>	<u> </u>	<u> </u>	+ $-$	<u> </u>	├ ──			———	<u> </u>	— <u> </u>		<u> </u>	<u> </u>		
Pant	ex				<u> </u>												
PX-W010	26	0	0	0	0		0	0	0	0							·
PX-W025	36	0		0			0	0	0	0			<u> </u>				
PX-VVU2/	4	0		0					0							ļ	
PA-WU20	5	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u> </u>		0	0		0		
Rocky	Flats					<u> </u>		<u> </u>									
RF-W003	143																
RF-W006	1155						00000000000000000000000000000000000000			100 100 100 100 100 100 100 100 100 100							100019979000000000000000000000000000000
RF-W017	s (1997)		i .	p •		· · · · •								¦ ₩.●.₩	•	ç XXXXXXXXX	Pu-238, Pu-240
RF-W018	8562													•			
RF-W019	5177	<u> </u>		0		0	0	0	0	0	0	0	0		0		
RF-WU24	36													•			
RF-44025	<1 					. <u>.</u>		(. .	· · · · · ·		•						Pu-239, Pu-240
RF-VV027	<u> </u>				8 . . .												Pu-239, Pu-240
RF-WWOSO	4/																PG-239, PG-240
RE-WOST	¥.																P0-239 P0-240
RF+W035	.							e z									PU-239 PU-240
RF-11042	20																P0-230 P0-240
DEVADAS	~~~																PU-239, PU-240
REMORE								1 A 1									PU-239, PU-240
DEMONT																	PU-239, PU-240
PE-MO47											2020						PU-239, PU-240
RE-W050	1267															l	Fursher Fursher
RE-MAR2	21									38 12 18							Dir 210 Dir 240
PE-MOTI	254		Ā									. Z					Pu-236 Pu-240
RE-M074	10		÷		ě	•	•	× .	•	l 🛛 🏅							Pu-238, Pu-240
Hanf	ord	.0000.700000					20100000000000000						<u></u>		20166667.7006600		
RL-W019	2					•				•			•	•	•		······································
RL-W020	121	Ú.				•				٠			•	•	•		· · · · · · · · · · · · · · · · · · ·
RL-W023	17					•				•		•	•	•	•		

,

Page D-19

TUMULUS

_										-	_	_				_		_	-			_	_	_			_			_															
		Controlling Nuclide(s)																																u224, U226 1234, U226											
		dow M																		 															20000000000000000000000000000000000000										
.		SRS	•	•	•	•	•	•	•	•		•			•	•	•			•	•	0	•	•	•	•		•		•				••	•		•	•	0	•	•	-		•	•
		ORR	•	•	•	•	•	•	•	•	-	•		-	•	•	•			•	•	•	•	•	•	•		•						••	•		•	•	•	•	•			•	•
Humld		PORTS	•	•	•	•	•	•	•	•		•		•	•	•	•			•	•		•	•	•	•		•						••	•	•	•	•	•	•	•			•	•
		FEMP					•	•	•		0	•									•	-	•	•	•	•		•	-					••		•	•		•	•				•	
		PGDP									D		=															•	•	■				••					•						
		ANLE	•	•	•	•	•	•	•	•		•			•	•	•			•	•		•	•	•	•		•						••	•		•	•	•	•	•			•	•
		Pantex		-		-				0	0		=		0	a	0	-		0	-				=		•							••				0	•		0		•		
		LANL		•						D	0				٥	0	0				=					-				•				••			•	o	•		٥				
		SNL	•								0			-	•							•						•					=	••					•						
P		RFETS	•	•	•	•	•	•	•	•		•			•	•	•	-	•	•	•		•	•	•	•		•						••	•		•	•	•	•	•			•	•
A		INEL								=	0		=	•					-			=						-		•				••		•	•		•					=	
		NTS	-		•					0	0		-		a	α	0									•						-	-	• •			-	0	•		0	•	-		
		Hanford									0							-							-		•	•	•	=		-		• •					•						
		LLNL					-	•	•	0	0					0	0	•						=	•		-							• •				0	•		0				
	Final Volume	(m,)	9	4	81	S	11	14	¥	14	56	13	8	12	115	4	⊽	9	2	27	47	83	439	13	9	34	t	2	4	ဓ	32	0	⊽	589	17	£	16	108	204	=	26	₽	36	8	2
		MWIR ID	L-W024	L-W025	:L-W026	L-W028	L-W030	(L-W032	L-W033	IL-W036	(L-W037	(L-W041	(L-W042	(L-W046	(L-W049	IL-W050	11-W051	(L-W052	(L-W053	(L-W054	(L-W055	RL-W056	R-W057	RL-W058	KL-W059	17-W060	KL-W061	(L-W062	RL-W063	RL-W064	rL-W065	RL-W066	3L-W067	(L-W068	11-W087	RL-W092	12-W093	RL-W094	11-W095	260W-1	RL-W098	11-W099	RL-W100	RL-W113	RL-W114

Page D-20

	-	olling Nucilde(s)																																										
-		WVDP Cont														•																												
	 	SRS	•	•	• •		• •	•	• •	• •	• •			•		•	•	•			•	•	•	•	•	•] 0	0	0	0	0	0	0	0	0	0	0	0	•	
		S OR	• •	• •			• •		• •		• •			•		•	•	•		•	•	•	•	•	•	•							•	•	•	•	•	•	•	•	•	•	•	
Humic		PORT	•	• •	• •				•		• •			•		•	•	•			•	•	•	•	•	•	٥			3 0			۵	0		٥	٥		۵	٥	٥	٥	•	
		FEND	•	•				•			• •			•						-	•				•	•						0	0	0	٥	0	0	٥	٥	٥	٥	٥	-	
					∎│∎																				•				0			0	٥	0	٥	o	0	D		۵	٥	0		
		ANLE	•								• •			•		•	•	•			•	•	•	•	•	•						0	a	0	0	0	D	0	۵	۵	0	٥	•	
		Pantex					זכ	1						•		0					•					0	0	0	0			0	۵	8	٥	0		o	٥	٥	٥			
		LANL												-		0									•	0	0	0	0		10	a	٥	٥		0	0	0	٥	٥	٥	۵	D	
							╸╎┓							-								-						0	0	זכ		0	٥	٥	0		0	٥	٥	٥	•	D		
P		RFETS	•		•		•	•	•		• •	•		•		•	•	•			•	•	•	•	•	•			0	3 6		D	a	۵			D		•	۵	0		•	
Ā		I																			•			-	•		0	0	00	b		0	٥	0	0	0			0	D	0			
		SI I				• •	3				∎					0		-					-			0	0	0	0		0	0	0	0	0		0	0					0	1
		Hanford	■		∎ ∎						╸╎╸														•				00			0	0	0	٥									
																٥											0	0	00	b		0	٥	0	0		0			0	0			
	Final Volume	Ē	- •	۰ <i>۲</i>	; -	- 1	3		⊳ ⊽		- 7	v	3	⊽	2	196	15	3136	⊽	⊽	⊽	Ŷ	⊽	⊽	⊽	⊽	-	₽ I	•	r e	18	¥	⊽	4	22	262	6 6	33	1 06	734	32	₽	3	
		MWIR ID	XL-W115	21-W117	21-W118	21-W119	RL-W122	10, 1017A	RL-W126	7C 11/1	RL-W128	3L-W129	3L-W130	RL-W131	RL-W132	RL-W140	RL-W141	RL-W142	RL-W143	RL-W144	RL-W146	RL-W149	RL-W150	RL-W151	RL-W152	RL-W153	RL-W170	RL-W173	RL-W174	21-W178	RL-W177	RL-W180	RL-W181	RL-W182	RL-W184	RL-W185	RL-W186	RL-W187	RL-W188	RL-W189	RL-W190	RL-W192	3L-W196	

U.234, U.236, U.238 U-204, U-206, U-206, U-206 U-234, U-235, U-238 U-234, U-236, U-238 Cs+137,1-120 Controlling Nuclide(s) C14, NE3 WDP • SRS • • D • • • • • 0 0 ο • 0 ю 8 • • 0 0 0 00 ٠ ٥ ю • • . ORR ě • • • • • • • • ð • • • • • • • • • • 0 • ۲ 0 ο • 0 • . PORTS Humid • • ۰ ě 0 • Ö ۲ 0 • • • • • ۵ • • ۵ ۵ ð • -• 0 • FEMP . . . ۵ ۵ 0 ο • 0 . 0 č . 0 . PGDP . ο ٠ ٥ 0 o 0 ۵ ۵ ٠ 0 ě 0 . ۲ . • • • • • ANLE -• • • • • ۵ 0 ۲ 0 0 • • • • ۰ ۵ ο . 0 0 • ۲ ٠ • • • • ۲ Pantex ۲ ۵ 0 ۵ ۵ 0 0 ۵ ۵ ۵ 0 0 ۵ ۵ ۵ ٠ ۵ ο Ö • Ż 0 ο 0 ٠ 0 • LANL ě 00000 0 о ۵ 0 0000 ۲ 0 0 . ο 0 0 ο ۵ • • . • ö SNL ۵ ۵ 00 ۰ 0 ۵ 0 . . ο 0 0 ο 0 a 0 0 ۵ ٥ 0 ۲ ٠ • RFETS . ٠ • ۰ • • • • • • • ٠ ο o ۲ ο ю o 0 • • • • • ٠ • ŝ ۰ Arid REL 00. • ο 0 00 ю 00 0 0 0 o . • ο ο ο ο ۵ 0 • • •• NTS ۶ • 0 è . 0 0 ο 0 0 🗖 ۵ 00 00 ۵ 00 ۰ 0 ۰ ۵ • 0 ο • ۰ . Hanford . . . 00 0 ο 0 0 0 ۵ o 0 • . ٠ ۵ 0 • ۰ é LENL ۲ . • ۲ 0 ۵ 0 ۵ . 0 0 ő • 0 0 ο • ۵ 0 0 ۵ σ ۵ ۵ 0 ۵ ٠ ٥ ٥ ۵ ٠ ٠ ۵ • 23 25 72 **₹** ⊽ ⊽ Final Volume Ţ (m^{*}) 123 6 4 28 ÷ 5 8 25 28 7 T 8 88 ⊽ 55 v ო Ξ ⊽ Savannah River v 3 v Ģ 37 V 2 West Valley RL-W232 RL-W233 RL-W234 SR-W001 SR-W003 SR-W004 SR-W005 SR-W015 SR-W015 SR-W016 SR-W018 SR-W018 SR-W018 SR-W028 SR-W08 RL-W216 RL-W217 RL-W226 RL-W202 RL-W203 RL-W215 RL-W210 RL-W227 SR-W069 RL-W208 RL-W209 RL-W211 RL-W228 RL-W231 **MWIR ID** RL-W200 RL-W206 RL-W199 **RL-W201 RL-W205**

Table D-2. Comparison of Waste Stream Concentrations with the Estimated PE Concentration Limits for a Tumulus Disposal Facility at 15 DOE Sites

۵

•

۵

۰

a

0

0

0

0

0

Ŷ

W-W019

DISTRIBUTION

National Governors Association State Task Force Representatives

John Thomasian NGA-Natural Resources Policy Studies 444 N. Capitol Street, Suite 267 Washington, DC 20001

Gordon Appel Department of Nuclear Safety 1035 Outer Park Drive, 5th Floor Springfield, IL 62704

Janice Archuleta New Mexico Environment Dept. Hazardous & Radioactive Materials Div. P. O. Box 26110 Santa Fe, NM 87502

Ann Beauchesne NGA-Natural Resources Policy Studies 444 N. Capitol Street, Suite 267 Washington, DC 20001-1512

Jerry Boese Ross & Associates, Ltd. 1218 Third Avenue, Suite 1207 Seattle, WA 98101

Jeff Breckel Washington Department of Ecology Nuclear & Mixed Waste Mgmt. Prog. P. O. Box 47600 Olympia, WA 98504-7600

Boyd Deaver Pantex Project Manager TX Natural Resource Conservation Comm. 3918 Canyon Drive Amarillo, TX 79109 Fred Dowsett Colorado Dept. of Health HMWMD-HWC-B-2 4300 Cherry Creek Drive Denver, CO 80222-1530

Benito Garcia New Mexico Environment Dept. Hazardous & Radioactive Materials Bureau P. O. Box 26110 Santa Fe, NM 87502

Jacqueline Hernandez-Berardini Colorado Dept. of Public Health & Environment 4300 Cherry Creek Drive, South/OE-EIG-B2 Denver, CO 80222-1530

Ed Kelley New Mexico Environment Dept. Water and Waste Management Div. P. O. Box 26110 Santa Fe, NM 87502

Earl Leming TN Dept. of Environment & Conservation 761 Emory Valley Drive Oak Ridge, TN 37830-7072

Paul Liebendorfer Nevada Division of Environmental Protection 123 W. Nye Lane Carson City, NV 89710

Randall McDowell KY Natural Resources & Environ. Protection Waste Legal Branch/Dept. of Law Capitol Plaza Tower, 5th Floor Frankfort, KY 40601 Dan Miller Colorado Dept. of Law Natural Resources Section 1525 Sherman Street Denver, CO 80203

Graham Mitchell Ohio Environmental Protection Agency 401 East Fifth Street Dayton, OH 45402

Brian Monson Division of Environmental Quality 1410 North Hilton Boise, ID 83706-1290

Roger Mulder Texas State Energy Conservation Office P. O. Box 13047 Austin, TX 78711

Roger Murphy Dept. of Environmental Conservation 50 Wolf Road, Rm. 460 Albany, NY 12233-7252

Tom Ortciger Illinois Dept. of Nuclear Safety 1035 Outer Park Drive, 5th Floor Springfield, IL 62704

Rensay Owen Idaho State Div. Of Env. Quality LDR Section 900 N. Skyline, Suite B Idaho Falls, ID 83402

Mike Savage Ohio Environmental Protection Agency P. O. Box 1049 Columbus, OH 43216-1049 Jeff Schrade Office of the Governor Division of Environmental Oversight 1410 North Hilton Boise, ID 83706-1255

Michelle Sherritt Dept. of Health & Environment 2600 Bull Street Columbia, SC 29201

John Walker Agency for Nuclear Projects 1820 N. Carson Street, Suite 252 Carson City, NV 89710

David Wilson SC Dept. of Health & Environmental Control 2600 Bull Street Columbia, SC 29201

Mike Wilson Waste Management Program Washington Department of Ecology P. O. Box 47600 Olympia, WA 98504-7600

Tom Winston Ohio Environmental Protection Agency 401 East Fifth Street Dayton, OH 45402

Doug Young Office of the Governor 136 State Capitol Building Denver, CO 80203

Disposal Workgroup

Joel Case DOE/Idaho 850 Energy Drive, MS 1118 Idaho Falls, ID 83401-1563

Marty Letourneau DOE/HQ, EM-35 Trevion II, Room 314 19901 Germantown Road Germantown, MD 20874-1290

Maurice Ades WSRC Bldg. 705-3C Aiken, SC 29803

Bill Gilbert DOE/Oak Ridge P. O. Box 2001 Oak Ridge, TN 37831-8620

Carol Irvine DOE/Oakland Operations Office 1301 Clay Street, 700-N Oakland, CA 94612-5208

Jeff Kerridge DOE/RF P. O. Box 928 Golden, CO 80402

Lance Mezga LMES/Oak Ridge P. O. Box 2003, MS 7357 Oak Ridge, TN 37831-7357

Colleen O'Laughlin DOE/Nevada P. O. Box 98518 Las Vegas, NV 89193-8518 Jim Orban DOE/Albuquerque Waste Management Division P. O. Box 5400 Albuquerque, NM 87185-5400

Roger Piscitella LMITCO P. O. Box 1625, MS 2424 Idaho Falls, ID 83415

Tim Sloan LANL, TA-54 Area L P. O. Box 1663, MS J593 Los Alamos, NM 87545

Joanne Steingard BDM Federal Bellmeade 3 20300 Century Blvd. Germantown, MD 20874

Linda Suttora DOE/HQ, EM-431 Cloverleaf Bldg. 1000 Independence Avenue, SW Washington, DC 20585-0002

Joe Waring DOE/RL P. O. Box 550, MS S7-55 Richland, WA 99352

Senior Review Panel

Dade Moeller Dade Moeller and Associates, Inc. 147 River Island Road New Bern, NC 28562

Randall Charbeneau Center for Research in Water Resources 10100 Burnett Road Austin, TX 78758

William Dornsife Commonwealth of Pennsylvania P. O. Box 8469 Harrisburg, PA 17105

Frank Parker Vanderbilt University Box 1596, Station B Nashville, TN 37235

Vern Rogers Rogers and Associates Engineering Corp. P. O. Box 330 Salt Lake City, UT 84110-0330

Kristin Shrader-Frechette University of South Florida Environ. Sc./Policy Prog./ Dept. of Philosophy 107 Cooper Hall Tampa, FL 33620-5550

Reading Rooms

Nancy Ben DOE/RF Public Reading Room 3645 West 112th Ave., Front Range CC Westminster, CO 80030

Nancy Bennett DOE Public Reading Room Albuquerque Technical Vocational Institute 4700 Morris, NE Albuquerque, NM 87111 Janet Fogg DOE/NV Public Reading Room 3084 S. Highland Drive Las Vegas, NV 89109

R.F. Heffner LLNL Env. Comm. Rel. P. O. Box 808L-404 Livermore, CA 94550

Paul Lewis DOE/SR Reading Room University of SC - Aiken 171 University Pkwy, Gregg-Graniteville Lib. Aiken, SC 29801

Amy Rothrock DOE/OR Public Reading Room 55 Jefferson Circle, Room 112 Oak Ridge, TN 37831

Gayla Sessoms DOE Public Reading Room Rm. 1E190 HR831 1000 Independence Ave., SW Washington, DC 20585

Terry Traub DOE Public Reading Room 100 Sprout Road, Room 130 West Richland, WA 99352

Kim Tully Center for Environmental Mgmt. Information 470 L'Enfant Plaza East, SW, Ste. 7112 Washington, DC 20024

Gail Wilmore DOE/ID Public Reading Room University Place, 1776 Science Center Dr. Idaho Falls, ID 83415

Mary Wilson Miamisburg Sr. Adult Cntr. Reading Rm. 305 East Central Avenue Miamisburg, OH 45342

Site Technical Contacts

Jim Ampaya Rockwell Aerospace-Rocketdyne Div. Mail Code T006 6633 Canoga Avenue Canoga Park, CA 91303

Gary Baker Battelle/Pantex MS 9061 P. O. Box 30020 Amarillo, TX 79177

Ward Best U.S. DOE 1800 E. 21st Street Ashtabula, OH 44004

JoAnna Cole Portsmouth Gaseous Diffusion Plant Bldg. X7725, MS 7550 3630 US Rte 23 So. Piketon, OH 45661

Mike Coony Rust Federal Services-Hanford MD278/C3103/200W 2355 Stevens Drive Richland, WA 99352

Bob Griffis Rocky Mountain Remediation Services RFETS Highway 93, T124A Golden, CO 80402-0464

Dave Hutchison Lockheed Idaho Technologies Co. MS 2414 765 Lindsay Blvd. Idaho Falls, ID 83415-2414 Susan Jahansooz Lawrence Berkeley Laboratory MS B75B-101 1 Cyclotron Road Berkeley, CA 94720

Lawrence Kozoyed Norfolk Naval Shipyard Bldg. M-22, 3rd Floor LSMM@NNSY Code 106.4 Portsmouth, VA 23709-5000

Nancy Lowry Westinghouse Savannah River Co. Environmental Protection Dept. Bldg. 742-A SRS Aiken, SC 29808

Joey Macy FERMCO MS 16-2 7400 Willey Road Fernald, OH 45030

Elizabeth Matthews DOE/West Valley 10282 Rock Springs Road West Valley, NY 14171-1091

Glenn May Lawrence Livermore National Laboratory 7000 East Avenue, L-621 Livermore, CA 94551

Robert Murphy Los Alamos National Laboratory TA 54, MS J593 37 Mesita del Buey Los Alamos, NM 87545

Derek Pickett University of Missouri-Columbia Research Reactor Center Research Park Drive Columbia, MO 65211 Angel Rivera Lockheed Martin Energy Systems Hwy 58, Bldg. K-0137, MS 7357 Oak Ridge, TN 37831-7357

Steven Schmucker Battelle Columbus Laboratories 505 King Avenue, Rm 11-1-064 Columbus, OH 43201

Tom Shadoan LMES/Paducah 5600 Hobbs Road, C-743 T-9 Paducah, KY 42001

Frank Smaltz DOE/Miamisburg Area Office 1 Mound Road, MS OSW-214 Miamisburg, OH 45342

Nancy Stewart Argonne National Laboratory-West EBR II Site Scoville, ID 83415

Ken Taylor Ecology and Environment 1500 First Interstate Center 9999 3rd Avenue Seattle, WA 98104

Glen Todzia Brookhaven National Laboratory Bldg. 445 Upton, NY 11973

Jim Wescott Argonne National Laboratory-East 9700 South Cass Ave., EWM/Bldg. 340 Argonne, IL 60439-4823

<u>DOE EM-30</u>

Mark Frei Acting Deputy Assistant Secretary for Waste Management US DOE, EM-30 1000 Independence Avenue, SW Washington, DC 20585

Joseph Coleman Technical Advisor US DOE, EM-30 Trevion II 19901 Germantown Road Germantown, MD 20874

Ralph Erickson Director, EM-32 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Dick Blaney Director, EM-33 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Lynn Wade Deputy Director, EM-33 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Patty Bubar Director, EM-35 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874 Jay Rhoderick Deputy Director, EM-35 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Jim Turi Director, EM-36 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Jim Antizzo Director, EM-37 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Kimberly Chaney Deputy Director, EM-38 US DOE Trevion II 19901 Germantown Road Germantown, MD 20874

Policy Coordination Group

Mike Klimas DOE/Chicago Operations 9800 S. Cass Avenue Argonne, IL 60439

Dave Osugi DOE/Oakland 1301 Clay Street, 700-N Oakland, CA 94612

Bill Prymak DOE/Rocky Flats Operations Office P. O. Box 928 Golden, CO 80402-0928 Melda Rafferty DOE/Portsmouth P. O. Box 700 Piketon, OH 45661

Rob Rothman DOE/Miamisburg Area Office 1 Mound Road, MS OSW-214 Miamisburg, OH 45342

T.J. Rowland DOE/West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 14171

Joy Sager DOE/Oak Ridge Operations Office 3 Main Street Oak Ridge, TN 37830

John Sattler DOE/Fernald P. O. Box 538705 Cincinnati, OH 45253-8705

Virgil Sauls DOE/Savannah River Operations Office Road 1A, Bldg. 703-A, Rm. B110 Aiken, SC 29808

Mona Williams DOE/Albuquerque Operations Office P. O. Box 5400, WMOSD Albuquerque, NM 87185-5400

Dist-7

<u>Other</u>

Nick Orlando US NRC 11545 Rockville Pike Rockville, MD 20852

Jeanie Foster 23365 Salt Pork Road Lawrenceburg, IN 47025

Virgil Lowery US DOE, EM-35 Trevion II 19901 Germantown Road Germantown, MD 20874

Greg Duggan US DOE, EM-35 Trevion II 19901 Germantown Road Germantown, MD 20874

Joe Ginanni DOE/NV/WMD 2763 So. Highland Drive Las Vegas, NV 89109

Helen Belencan US DOE, EM-35 Trevion II, Room 434 19901 Germandtown Road Germantown, MD 20874-1290

Jenya Macheret DOE/ID 850 Energy Drive Idaho Falls, ID 83401

Ron Nakaoka Los Alamos National Laboratory P. O. Box 1663, MS E517 Los Alamos, NM 87545

<u>Internal</u>

- 1 MS 0720 Phil Pohl, 6626
- 25 MS 0734 Robert Waters, 6472
- 1 MS 0734 Larry Bustard, 6472
- 1 MS 0734 Marilyn Gruebel, 6472
- 1 MS 0734 Brenda Langkopf, 6472
- 1 MS 1050 Paul Kuehne, 7571
- 1 MS 1303 Maureen Lincoln, 7573

Unclassified Unlimited Release Documents

- 1 MS 9018 Central Technical Files, 8940-2
- 5 MS 0899 Technical Library, 4414
- 2 MS 0619 Review & Approval Desk, 12690 For DOE/OSTI