25 research outputs found

    Inverse Protein Folding Problem via Quadratic Programming

    Get PDF
    International audienceThis paper presents a method of reconstruction a primary structure of a protein that folds into a given geometrical shape. This method predicts the primary structure of a protein and restores its linear sequence of amino acids in the polypeptide chain using the tertiary structure of a molecule. Unknown amino acids are determined according to the principle of energy minimization. This study represents inverse folding problem as a quadratic optimization problem and uses different relaxation techniques to reduce it to the problem of convex optimizations. Computational experiment compares the quality of these approaches on real protein structures

    Exploring van der Waals materials with high anisotropy: geometrical and optical approaches

    Full text link
    The emergence of van der Waals (vdW) materials resulted in the discovery of their giant optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found As2S3 as a highly anisotropic vdW material. It demonstrates rare giant in-plane optical anisotropy, high refractive index and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, As2S3 opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-waveplate that combines classical and the Fabry-Perot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.Comment: 11 pages, 5 figure

    Assessment of chemical-crosslink-assisted protein structure modeling in CASP13

    Get PDF
    International audienceWith the advance of experimental procedures obtaining chemical crosslinking information is becoming a fast and routine practice. Information on crosslinks can greatly enhance the accuracy of protein structure modeling. Here, we review the current state of the art in modeling protein structures with the assistance of experimentally determined chemical crosslinks within the framework of the 13th meeting of Critical Assessment of Structure Prediction approaches. This largest‐to‐date blind assessment reveals benefits of using data assistance in difficult to model protein structure prediction cases. However, in a broader context, it also suggests that with the unprecedented advance in accuracy to predict contacts in recent years, experimental crosslinks will be useful only if their specificity and accuracy further improved and they are better integrated into computational workflows

    Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment

    Get PDF
    We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.Cancer Research UK, Grant/Award Number: FC001003; Changzhou Science and Technology Bureau, Grant/Award Number: CE20200503; Department of Energy and Climate Change, Grant/Award Numbers: DE-AR001213, DE-SC0020400, DE-SC0021303; H2020 European Institute of Innovation and Technology, Grant/Award Numbers: 675728, 777536, 823830; Institut national de recherche en informatique et en automatique (INRIA), Grant/Award Number: Cordi-S; Lietuvos Mokslo Taryba, Grant/Award Numbers: S-MIP-17-60, S-MIP-21-35; Medical Research Council, Grant/Award Number: FC001003; Japan Society for the Promotion of Science KAKENHI, Grant/Award Number: JP19J00950; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2019-110167RB-I00; Narodowe Centrum Nauki, Grant/Award Numbers: UMO-2017/25/B/ST4/01026, UMO-2017/26/M/ST4/00044, UMO-2017/27/B/ST4/00926; National Institute of General Medical Sciences, Grant/Award Numbers: R21GM127952, R35GM118078, RM1135136, T32GM132024; National Institutes of Health, Grant/Award Numbers: R01GM074255, R01GM078221, R01GM093123, R01GM109980, R01GM133840, R01GN123055, R01HL142301, R35GM124952, R35GM136409; National Natural Science Foundation of China, Grant/Award Number: 81603152; National Science Foundation, Grant/Award Numbers: AF1645512, CCF1943008, CMMI1825941, DBI1759277, DBI1759934, DBI1917263, DBI20036350, IIS1763246, MCB1925643; NWO, Grant/Award Number: TOP-PUNT 718.015.001; Wellcome Trust, Grant/Award Number: FC00100

    Inverse Protein Folding Problem via Quadratic Programming

    Get PDF
    International audienceThis paper presents a method of reconstruction a primary structure of a protein that folds into a given geometrical shape. This method predicts the primary structure of a protein and restores its linear sequence of amino acids in the polypeptide chain using the tertiary structure of a molecule. Unknown amino acids are determined according to the principle of energy minimization. This study represents inverse folding problem as a quadratic optimization problem and uses different relaxation techniques to reduce it to the problem of convex optimizations. Computational experiment compares the quality of these approaches on real protein structures

    Smooth orientation-dependent scoring function for coarse-grained protein quality assessment

    Get PDF
    International audienceMotivation: Protein quality assessment (QA) is a crucial element of protein structure prediction, a fundamental and yet open problem in structural bioinformatics. QA aims at ranking predicted protein models to select the best candidates. The assessment can be performed based either on a single model or on a consensus derived from an ensemble of models. The latter strategy can yield very high performance but substantially depends on the pool of available candidate models, which limits its applicability. Hence, single-model QA methods remain an important research target, also because they can assist the sampling of candidate models. Results: We present a novel single-model QA method called SBROD. The SBROD (Smooth Backbone-Reliant Orientation-Dependent) method uses only the backbone protein conforma-tion, and hence it can be applied to scoring coarse-grained protein models. The proposed method deduces its scoring function from a training set of protein models. The SBROD scoring function is composed of four terms related to different structural features: residue-residue orientations, contacts between backbone atoms, hydrogen bonding, and solvent-solute interactions. It is smooth with respect to atomic coordinates and thus is potentially applicable to continuous gradient-based optimization of protein conformations. Furthermore, it can also be used for coarse-grained protein modeling and computational protein design. SBROD proved to achieve similar performance to state-of-the-art single-model QA methods on diverse datasets (CASP11, CASP12, and MOULDER)

    Inverse Protein Folding Problem via Quadratic Programming

    No full text
    International audienceThis paper presents a method of reconstruction a primary structure of a protein that folds into a given geometrical shape. This method predicts the primary structure of a protein and restores its linear sequence of amino acids in the polypeptide chain using the tertiary structure of a molecule. Unknown amino acids are determined according to the principle of energy minimization. This study represents inverse folding problem as a quadratic optimization problem and uses different relaxation techniques to reduce it to the problem of convex optimizations. Computational experiment compares the quality of these approaches on real protein structures
    corecore