315 research outputs found
Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal-and natural gas-fired electricity
Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air
emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood.
Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding
water consumed for fuel extraction. This work uses contemporary data from specific resource basins and
power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles:
fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity
of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural
gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic
fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction
appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high
water intensity of Texas lignite extraction. This work uses new resource basin and power plant level
water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power
sector, a shift under consideration due to potential environmental benefits and very low natural gas
prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would
reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of
Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs.Mechanical Engineerin
The Office of the Future: Virtual, Portable, and Global.
Virtual reality has the potential to change the way we work. We envision the future office worker to be able to work productively everywhere solely using portable standard input devices and immersive head-mounted displays. Virtual reality has the potential to enable this, by allowing users to create working environments of their choice and by relieving them from physical world limitations, such as constrained space or noisy environments. In this paper, we investigate opportunities and challenges for realizing this vision and discuss implications from recent findings of text entry in virtual reality as a core office task
Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites
AbstractGlobal water planners are increasingly considering seawater desalination as an alternative to traditional freshwater supplies. Since desalination is both expensive and energy intensive, taking advantage of favorable natural and societal conditions while siting desalination facilities can provide significant financial and environmental returns. Currently, policy makers do not use a location-specific integrated analytical framework to determine where natural and societal conditions are conducive to desalination. This analysis seeks to fill that gap by demonstrating a multi-criteria, geographically-resolved methodology for identifying suitable regions for desalination infrastructure where 1) available renewable resources can offset part of the fossil energy load; 2) feedwater characteristics reduce the total energy needed for desalination; and 3) human populations have capacity and willingness to pay for desalinated water. This work demonstrates the method with a quantitative global analysis that identifies favorable sites for solar-aided seawater reverse osmosis desalination (SWRO) based on specific target criteria. Location-based data about natural conditions (solar insolation, ocean salinity, and ocean temperature) are integrated and mapped with social indicators (water stress, prevailing water prices, and population) to identify regions where solar-aided SWRO has the highest potential. This work concludes that water-stressed tropical and subtropical cities show the highest potential for economically sustainable solar-aided SWRO
Text Entry in Immersive Head-Mounted Display-Based Virtual Reality Using Standard Keyboards
We study the performance and user experience of two popular mainstream text
entry devices, desktop keyboards and touchscreen keyboards, for use in Virtual
Reality (VR) applications. We discuss the limitations arising from limited
visual feedback, and examine the efficiency of different strategies of use. We
analyze a total of 24 hours of typing data in VR from 24 participants and find
that novice users are able to retain about 60% of their typing speed on a
desktop keyboard and about 40-45\% of their typing speed on a touchscreen
keyboard. We also find no significant learning effects, indicating that users
can transfer their typing skills fast into VR. Besides investigating baseline
performances, we study the position in which keyboards and hands are rendered
in space. We find that this does not adversely affect performance for desktop
keyboard typing and results in a performance trade-off for touchscreen keyboard
typing
Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers.
Virtual Reality (VR) has the potential to transform knowledge work. One
advantage of VR knowledge work is that it allows extending 2D displays into the
third dimension, enabling new operations, such as selecting overlapping objects
or displaying additional layers of information. On the other hand, mobile
knowledge workers often work on established mobile devices, such as tablets,
limiting interaction with those devices to a small input space. This challenge
of a constrained input space is intensified in situations when VR knowledge
work is situated in cramped environments, such as airplanes and touchdown
spaces.
In this paper, we investigate the feasibility of interacting jointly between
an immersive VR head-mounted display and a tablet within the context of
knowledge work. Specifically, we 1) design, implement and study how to interact
with information that reaches beyond a single physical touchscreen in VR; 2)
design and evaluate a set of interaction concepts; and 3) build example
applications and gather user feedback on those applications.Comment: 10 pages, 8 figures, ISMAR 202
ReconViguRation: Reconfiguring Physical Keyboards in Virtual Reality.
Physical keyboards are common peripherals for personal computers and are efficient standard text entry devices. Recent research has investigated how physical keyboards can be used in immersive head-mounted display-based Virtual Reality (VR). So far, the physical layout of keyboards has typically been transplanted into VR for replicating typing experiences in a standard desktop environment. In this paper, we explore how to fully leverage the immersiveness of VR to change the input and output characteristics of physical keyboard interaction within a VR environment. This allows individual physical keys to be reconfigured to the same or different actions and visual output to be distributed in various ways across the VR representation of the keyboard. We explore a set of input and output mappings for reconfiguring the virtual presentation of physical keyboards and probe the resulting design space by specifically designing, implementing and evaluating nine VR-relevant applications: emojis, languages and special characters, application shortcuts, virtual text processing macros, a window manager, a photo browser, a whack-a-mole game, secure password entry and a virtual touch bar. We investigate the feasibility of the applications in a user study with 20 participants and find that, among other things, they are usable in VR. We discuss the limitations and possibilities of remapping the input and output characteristics of physical keyboards in VR based on empirical findings and analysis and suggest future research directions in this area
Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas
The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion of freshwater withdrawals in the United States, and shifting where electricity generation occurs can allow the grid to act as a virtual water pipeline, increasing water availability in regions with drought by reducing water consumption and withdrawals for power generation. During a 2006 drought, shifting electricity generation out of the most impacted areas of South Texas (~10% of base case generation) to other parts of the grid would have been feasible using transmission and power generation available at the time, and some areas would experience changes in air quality. Although expensive, drought-based electricity dispatch is a potential parallel strategy that can be faster to implement than other infrastructure changes, such as air cooling or water pipelines.National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (Grant 0835414)United States. Dept. of Energ
A perspective on multinational enterprise’s national identity dilemma
This conceptual paper identifies gaps and contributes to the literature on ‘identity’ dilemmas faced by multinational enterprises operating in a globalised world. Various characteristics and business strategies of multinational enterprises are delineated and analysed through the lens of social identity theory and international business concepts such as market and institutional logic. Our analysis, based on multiple cases, and derived from a variety of industries and countries, associates the identity dilemma to informed business strategy. Our findings suggest that while multinational enterprises face identity dilemmas that they sometimes use to their advantage, it also poses several challenges. Through our conceptualisation, we derive five distinct propositions to shape future research directions
Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer
Organic semiconductors can be easily combined with other molecular building blocks in order to fabricate multifunctional devices, in which each component conveys a specific (opto)electronic function. We have fabricated photoswitchable hybrid thin-film transistors based on an active bi-component material, consisting of an n-type fullerene derivative and a photochromic diarylethene that possesses light-tunable energy levels. The devices can be gated in two independent ways by either using an electrical stimulus via the application of a voltage to the gate electrode or an optical stimulus causing interconversion of the diarylethene molecules between their two isomers. Fine control over the device output current is achieved by engineering the diarylethenes' LUMO that can act as an intra-gap state controlled by a distinct wavelength in the UV or in the visible range. Importantly, the devices based on a mixed diarylethene/fullerene active layer preserve the high mobility of the pristine semiconductor
- …