3 research outputs found

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.</p

    Meeting report: Spontaneous Lesions and Diseases in Wild, Captive-Bred, and Zoo-Housed Nonhuman Primates and in Nonhuman Primate Species Used for Drug Safety Studies

    No full text
    The combination of loss of habitat, human population encroachment, and increased demand of select species for biomedical research has expanded the list of emerging diseases. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from treatment related findings. A workshop and mini-symposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3-4, 2011 in Nashville, TN. The first session had presentations from Drs. Linda Lowenstine and Richard Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case studies of rare or newly observed spontaneous lesions in nonhuman primate species. The mini-symposium concentrated on background and spontaneous lesions in nonhuman primate species used for drug safety studies, and included presentations on incidence and range of spontaneous findings in cynomolgus macaques; lesions in the urogenital system of macaques; gastrointestinal lesions and pathogens in macaques and marmosets; age-associated lesions in rhesus macaques; and effects of Plasmodium infection on drug development. Both sessions were heavily attended by meeting participants that included students, pathology trainees, and experienced pathologists from academia and industry with an interest in spontaneous diseases of nonhuman primates

    Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology

    No full text
    The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments
    corecore