389 research outputs found

    The ρ-meson light-cone distribution amplitudes from lattice QCD

    Get PDF
    We present the results of a lattice study of the normalization constants and second moments of the light-cone distribution amplitudes of longitudinally and transversely polarized ρ\rho mesons. The calculation is performed using two flavors of dynamical clover fermions at lattice spacings between 0.060fm0.060\,\text{fm} and 0.081fm0.081\,\text{fm}, different lattice volumes up to mπL=6.7m_\pi L = 6.7 and pion masses down to mπ=150MeVm_\pi=150\,\text{MeV}. Bare lattice results are renormalized non-perturbatively using a variant of the RI'-MOM scheme and converted to the MS\overline{\text{MS}} scheme. The necessary conversion coefficients, which are not available in the literature, are calculated. The chiral extrapolation for the relevant decay constants is worked out in detail. We obtain for the ratio of the tensor and vector coupling constants fρT/fρT=0.629(8)f_\rho^T/f_\rho^{\vphantom{T}} = 0.629(8) and the values of the second Gegenbauer moments a2=0.132(27)a_2^\parallel = 0.132(27) and a2=0.101(22)a_2^\perp = 0.101(22) at the scale μ=2GeV\mu = 2\,\text{GeV} for the longitudinally and transversely polarized ρ\rho mesons, respectively. The errors include the statistical uncertainty and estimates of the systematics arising from renormalization. Discretization errors cannot be estimated reliably and are not included. In this calculation the possibility of ρππ\rho\to\pi\pi decay at the smaller pion masses is not taken into account

    Quantum control of proximal spins using nanoscale magnetic resonance imaging

    Full text link
    Quantum control of individual spins in condensed matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation, and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual spin control to nanoscale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual spin control can be achieved with few-nm resolution for proximal electron spins by performing single-spin magnetic resonance imaging (MRI), which is realized via a scanning magnetic field gradient that is both strong enough to achieve nanometric spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and achieve nanometric resolution in imaging, characterization, and manipulation of individual spins. For NV centers, our results in individual spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution compared to conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement, and nanoscale magnetometry.Comment: 7 pages, 4 figure

    The Minimal Domain of Adipose Triglyceride Lipase (ATGL) Ranges until Leucine 254 and Can Be Activated and Inhibited by CGI-58 and G0S2, Respectively

    Get PDF
    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated

    Molecular Analysis of Virulent Determinants of Enterovirus 71

    Get PDF
    Enterovirus 71 (EV71) is the most important causative agent of hand, foot and mouth disease (HFMD) in children. In most cases, it is a self-limiting illness. However some EV71 infectious cases can develop severe clinical outcomes, such as encephalitis, meningitis, poliomyelitis like paralysis, and even death. To identify the determinants of virulence, the deduced amino acid sequence of polyprotein and nucleotide sequence of 5′-NTR and 3′-NTR in 25 SC-EV71 strains (strains from severe cases) and 31 MC-EV71 strains (strains from mild cases) were analyzed. Results showed four amino acids on two positions (GlyP710/GlnP710/ArgP710 and GluP729) on the DE and EF loop of VP1, one (LysP930) on the surface of protease 2A and four nucleotides on three positions (GP272, UP488 and AP700/UP700) in the 5'-NTR region are associated with EV71 virulent phenotype. Predicted secondary structure of RNA using the consensus sequence of 5'-NTR by RNAStructure showed the mutation of nucleotide at position 488 in strain BJ08-Z004-3 (position 491 in prototype strain BrCr) can result in the discrepancy of an additional pair of nucleotides and thus change the stability of the second structure of IRES. Fragment base content analysis showed that in the region 696 to 714 bp at the 5'-NTR, where the AP700/UP700 was located, the nucleotide constitution ratios differed significantly between SC-EV71 and MC-EV71 strains. In conclusion, comparative genomic analysis showed that virulence of EV71 strains are mainly determined by the amino acids on two positions of VP1, one position of protease 2A and the nucleotides on three positions in 5'-NTR

    Nanoscale magnetic imaging of a single electron spin under ambient conditions

    Get PDF
    The detection of ensembles of spins under ambient conditions has revolutionized the biological, chemical and physical sciences through magnetic resonance imaging and nuclear magnetic resonance . Pushing sensing capabilities to the individual-spin level would enable unprecedented applications such as single-molecule structural imaging; however, the weak magnetic fields from single spins are undetectable by conventional far-field resonance techniques . In recent years, there has been a considerable effort to develop nanoscale scanning magnetometers , which are able to measure fewer spins by bringing the sensor in close proximity to its target. The most sensitive of these magnetometers generally require low temperatures for operation, but the ability to measure under ambient conditions (standard temperature and pressure) is critical for many imaging applications, particularly in biological systems. Here we demonstrate detection and nanoscale imaging of the magnetic field from an initialized single electron spin under ambient conditions using a scanning nitrogen-vacancy magnetometer. Real-space, quantitative magnetic-field images are obtained by deterministically scanning our nitrogen-vacancy magnetometer 50 nm above a target electron spin, while measuring the local magnetic field using dynamically decoupled magnetometry protocols. We discuss how this single-spin detection enables the study of a variety of room-temperature phenomena in condensed-matter physics with an unprecedented combination of spatial resolution and spin sensitivity

    Approaches to link RNA secondary structures with splicing regulation

    Full text link
    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitating or by hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This review describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3-prime splice site.Comment: 21 pages, 7 figure

    Baseline Levels of Influenza-Specific CD4 Memory T-Cells Affect T-Cell Responses to Influenza Vaccines

    Get PDF
    BACKGROUND: Factors affecting immune responses to influenza vaccines have not been studied systematically. We hypothesized that T-cell and antibody responses to the vaccines are functions of pre-existing host immunity against influenza antigens. METHODOLOGY/PRINCIPAL FINDINGS: During the 2004 and 2005 influenza seasons, we have collected data on cellular and humoral immune reactivity to influenza virus in blood samples collected before and after immunization with inactivated or live attenuated influenza vaccines in healthy children and adults. We first used cross-validated lasso regression on the 2004 dataset to identify a group of candidate baseline correlates with T-cell and antibody responses to vaccines, defined as fold-increase in influenza-specific T-cells and serum HAI titer after vaccination. The following baseline parameters were examined: percentages of influenza-reactive IFN-gamma(+) cells in T and NK cell subsets, percentages of influenza-specific memory B-cells, HAI titer, age, and type of vaccine. The candidate baseline correlates were then tested with the independent 2005 dataset. Baseline percentage of influenza-specific IFN-gamma(+) CD4 T-cells was identified as a significant correlate of CD4 and CD8 T-cell responses, with lower baseline levels associated with larger T-cell responses. Baseline HAI titer and vaccine type were identified as significant correlates for HAI response, with lower baseline levels and the inactivated vaccine associated with larger HAI responses. Previously we reported that baseline levels of CD56(dim) NK reactivity against influenza virus inversely correlated with the immediate T-cell response to vaccination, and that NK reactivity induced by influenza virus depended on IL-2 produced by influenza-specific memory T-cells. Taken together these results suggest a novel mechanism for the homeostasis of virus-specific T-cells, which involves interaction between memory helper T-cells, CD56(dim) NK and DC. SIGNIFICANCE: These results demonstrate that assessment of baseline biomarkers may predict immunologic outcome of influenza vaccination and may reveal some of the mechanisms responsible for variable immune responses following vaccination and natural infection

    Distinct Neurocognitive Strategies for Comprehensions of Human and Artificial Intelligence

    Get PDF
    Although humans have inevitably interacted with both human and artificial intelligence in real life situations, it is unknown whether the human brain engages homologous neurocognitive strategies to cope with both forms of intelligence. To investigate this, we scanned subjects, using functional MRI, while they inferred the reasoning processes conducted by human agents or by computers. We found that the inference of reasoning processes conducted by human agents but not by computers induced increased activity in the precuneus but decreased activity in the ventral medial prefrontal cortex and enhanced functional connectivity between the two brain areas. The findings provide evidence for distinct neurocognitive strategies of taking others' perspective and inhibiting the process referenced to the self that are specific to the comprehension of human intelligence
    corecore