440 research outputs found

    NP Photonic lasers and a new laser-frequency offset device

    Get PDF
    Author Institution: NP PhotonicsSlides presented at the 5th Annual Photonic Doppler Velocimetry (PDV) Users Conference held at The Ohio State University, Columbus, Ohio, September 8-9, 2010

    G-Signatures: Global Graph Propagation With Randomized Signatures

    Full text link
    Graph neural networks (GNNs) have evolved into one of the most popular deep learning architectures. However, GNNs suffer from over-smoothing node information and, therefore, struggle to solve tasks where global graph properties are relevant. We introduce G-Signatures, a novel graph learning method that enables global graph propagation via randomized signatures. G-Signatures use a new graph conversion concept to embed graph structured information which can be interpreted as paths in latent space. We further introduce the idea of latent space path mapping. This allows us to iteratively traverse latent space paths, and, thus globally process information. G-Signatures excel at extracting and processing global graph properties, and effectively scale to large graph problems. Empirically, we confirm the advantages of G-Signatures at several classification and regression tasks.Comment: 7 pages (+ appendix); 4 figure

    Cannabinoid Receptor Type-2 in B Cells Is Associated with Tumor Immunity in Melanoma.

    Get PDF
    Agents targeting the endocannabinoid system (ECS) have gained attention as potential cancer treatments. Given recent evidence that cannabinoid receptor 2 (CB2R) regulates lymphocyte development and inflammation, we performed studies on CB2R in the immune response against melanoma. Analysis of The Cancer Genome Atlas (TCGA) data revealed a strong positive correlation between CB2R expression and survival, as well as B cell infiltration in human melanoma. In a murine melanoma model, CB2R expression reduced the growth of melanoma as well as the B cell frequencies in the tumor microenvironment (TME), compared to CB2R-deficient mice. In depth analysis of tumor-infiltrating B cells using single-cell RNA sequencing suggested a less differentiated phenotype in tumors from Cb2r-/- mice. Thus, in this study, we demonstrate for the first time a protective, B cell-mediated role of CB2R in melanoma. This gained insight might assist in the development of novel, CB2R-targeted cancer therapies

    Engineering vacuolar sorting pathways for efficient secretion of recombinant proteins

    Get PDF
    Recombinant protein production is an expanding branch of biotechnology with increasing economic importance. Currently, 20% of biopharmaceutical proteins and approximately half of the industrial enzymes are produced in yeasts. Many proteins are efficiently secreted by yeast systems, reaching product titers in the g L-1 range. The expression of more complex proteins, however, may overwhelm the folding and secretion capacity of the host cells. This triggers the unfolded protein response (UPR), which aims at restoring endoplasmic reticulum (ER) homeostasis. The UPR, in turn, is thought to activate ER-associated protein degradation (ERAD). Alternatively, trafficking of correctly folded proteins can be hampered on their way to the cell exterior leading e.g. to missorting and subsequent degradation in the vacuole. The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Vacuolar protein sorting has not been investigated in detail so far in P. pastoris, although there were a few indications that vacuolar mistargeting of recombinant products might occur also in this yeast. Thus we engineered the vacuolar sorting pathways in P. pastoris and investigated their impact on extracellular product titers as well as intracellular localization of the recombinant secretory product. Thereby, differences between vps (vacuolar protein sorting) mutant strains disrupted in genes involved either in the CORVET or the HOPS tethering complexes became obvious. Moreover, we were able to show that engineering of the vacuolar sorting pathways has a positive impact on heterologous protein secretion, however, in some cases simultaneous inactivation of specific vacuolar proteases was necessary. Taken together, these studies allowed us to gain deeper insight into the pathways leading to intracellular degradation of recombinant secretory proteins. Based on these findings, approaches how to efficiently adapt the host cell’s secretion capacity will be presented, which confirm that impairment of vacuolar protein sorting is an effective means of enhancing secretion of heterologous proteins

    A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application

    Get PDF
    The Biomass to Liquid (BtL) Fischer-Tropsch (FT) route converts lignocellulosic feedstock to renewable hydrocarbons. This, paper shows a novel production route for biomass-derived synthetic paraffin wax via gasification of lignocellulosic feedstock, Fischer-Tropsch synthesis (FTS) and hydrofining. The Fischer-Tropsch wax was fractionated, refined and analyzed with respect to compliance to commercial standards. The fractioned paraffin waxes were hydrofined using a commercial sulfide NiMo–Al2O3 catalyst and a trickle bed reactor. A parametric variation was performed to optimize the hydrofining process. It was shown that the produced medium-melt paraffin wax could fulfill the requirements for “Paraffinum solidum” defined by the European Pharmacopoeia (Ph. Eur). The high-melt wax fraction showed potential to be used as food packaging additive. Furthermore, the renewable wax was analyzed regarding PAH content and it was shown that the hydrofined wax was quasi-PAH-free
    • …
    corecore