298 research outputs found

    Successful Treatment of Pneumothorax in a Dog With Sterile Pleural Fibrosis Caused by Chylothorax

    Get PDF
    A 2-year-old, 12 kg, intact male crossbreed dog was presented with respiratory distress, exercise intolerance, and gagging. Plain thoracic radiographs revealed severe pleural effusion. Although bilateral needle thoracocentesis and chest tube placement were performed, no re-expansion of the lung lobes occurred. Pleural effusion was of chylous quality and led to lung entrapment. Computer tomography revealed a highly atrophic and atelectatic right middle lung lobe. The remaining lung lobes were only expanded to ~40%. Visceral pleura and pericardium showed a heterogeneous thickening consistent with pleural fibrosis. Partial pericardiectomy with resection of the middle lung lobe through a right lateral thoracotomy was performed. Ligation of the thoracic duct and ablation of the cisterna chyli was achieved through a single paracostal approach. Histopathology revealed chronic-active proliferative beginning granulomatous pleuritis, fibrotic pericarditis, and partial coagulative necrosis with incomplete granulomatous sequestration in the resected middle lung lobe. Chylothorax resolved after surgical intervention. Active pleural effusion resolved, and lung entrapment changed to trapped lung disease. The remaining lung lobes re-expanded to ~80% over the following 6 days. The dog was discharged 10 days later. Mild to moderate pleural effusion of non-chylic quality was present during the following 4 months. Meloxicam was administered for 4 months because of its anti-fibrotic and anti-inflammatory properties. Fifteen months later, thoracic radiographs revealed full radiologic expansion of the lungs with persistent mild pleural fibrosis. To the authors' knowledge, this is the first case report of pneumothorax due pleural fibrosis caused by chylothorax in a dog with an excellent clinical outcome

    Modulation of the host Th1 immune response in pigeon protozoal encephalitis caused by Sarcocystis calchasi

    Get PDF
    Pigeon protozoal encephalitis (PPE) is an emerging central-nervous disease of domestic pigeons (Columba livia f. domestica) reported in Germany and the United States. It is caused by the apicomplexan parasite Sarcocystis calchasi which is transmitted by Accipter hawks. In contrast to other members of the Apicomplexa such as Toxoplasma and Plasmodium, the knowledge about the pathophysiology and host manipulation of Sarcocystis is scarce and almost nothing is known about PPE. Here we show by mRNA expression profiling a significant down-modulation of the interleukin (IL)-12/IL-18/interferon (IFN)-γ axis in the brains of experimentally infected pigeons during the schizogonic phase of disease. Concomitantly, no cellular immune response was observed in histopathology while immunohistochemistry and nested PCR detected S. calchasi. In contrast, in the late central-nervous phase, IFN-γ and tumor necrosis factor (TNF) α-related cytokines were significantly up-modulated, which correlated with a prominent MHC-II protein expression in areas of mononuclear cell infiltration and necrosis. The mononuclear cell fraction was mainly composed of T-lymphocytes, fewer macrophages and B-lymphocytes. Surprisingly, the severity and composition of the immune cell response appears unrelated to the infectious dose, although the severity and onset of the central nervous signs clearly was dose-dependent. We identified no or only very few tissue cysts by immunohistochemistry in pigeons with severe encephalitis of which one pigeon repeatedly remained negative by PCR despite severe lesions. Taken together, these observations may suggest an immune evasion strategy of S. calchasi during the early phase and a delayed-type hypersensitivity reaction as cause of the extensive cerebral lesions during the late neurological phase of disease

    High prevalence of Sarcocystis calchasi in racing pigeon flocks in Germany

    Get PDF
    The apicomplexan parasite Sarcocystis calchasi (Coccidia: Eimeriorina: Sarcocystidae) is the causative agent of Pigeon Protozoal Encephalitis (PPE) and infects birds of the orders Columbiformes, Piciformes and Psittaciformes. Accipiter hawks (Aves: Accipitriformes) are the definitive hosts of this parasite. Infections of S. calchasi have been detected in Germany, the United States and Japan. However, the prevalence of the parasite in racing pigeon flocks has not yet been determined. Here, the first cross-sectional prevalence study to investigate S. calchasi in pigeon racing flocks was accomplished including 245 pigeon flocks across Germany. A total of 1,225 muscle biopsies, were taken between 2012 and 2016 and examined by semi-nested PCR for S. calchasi DNA targeting the ITS gene. Additionally, a questionnaire on construction of the aviary as well as management and health status of the flock was conducted. In 27.8% (95% C.I. = 22.3–33.8%) of the flocks, S. calchasi DNA was detected in at least one pigeon. Positive flocks were located in 15 out of 16 federal states. A significant increase of infected racing pigeons was seen in spring. Half-covered or open aviary constructions showed a trend of increase of the prevalence rate, while anti-coccidian treatment and acidified drinking water had no effects. The high prevalence and the geographical distribution of S. calchasi suggest a long-standing occurrence of the parasite in the German racing pigeon population. For pigeons presented with neurological signs or other symptoms possibly related to PPE, S. calchasi should be considered as a potential cause throughout Germany

    Genomic, biochemical and expressional properties reveal strong conservation of the CLCA2 gene in birds and mammals

    Get PDF
    Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family

    Transcriptome and Proteome Research in Veterinary Science: What Is Possible and What Questions Can Be Asked?

    Get PDF
    In recent years several technologies for the complete analysis of the transcriptome and proteome have reached a technological level which allows their routine application as scientific tools. The principle of these methods is the identification and quantification of up to ten thousands of RNA and proteins species in a tissue, in contrast to the sequential analysis of conventional methods such as PCR and Western blotting. Due to their technical progress transcriptome and proteome analyses are becoming increasingly relevant in all fields of biological research. They are mainly used for the explorative identification of disease associated complex gene expression patterns and thereby set the stage for hypothesis-driven studies. This review gives an overview on the methods currently available for transcriptome analysis, that is, microarrays, Ref-Seq, quantitative PCR arrays and discusses their potentials and limitations. Second, the most powerful current approaches to proteome analysis are introduced, that is, 2D-gel electrophoresis, shotgun proteomics, MudPIT and the diverse technological concepts are reviewed. Finally, experimental strategies for biomarker discovery, experimental settings for the identification of prognostic gene sets and explorative versus hypothesis driven approaches for the elucidation of diseases associated genes and molecular pathways are described and their potential for studies in veterinary research is highlighted

    Hamster models of COVID-19 pneumonia reviewed: How human can they be?

    Get PDF
    The dramatic global consequences of the coronavirus disease 2019 (COVID-19) pandemic soon fueled quests for a suitable model that would facilitate the development and testing of therapies and vaccines. In contrast to other rodents, hamsters are naturally susceptible to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the Syrian hamster (Mesocricetus auratus) rapidly developed into a popular model. It recapitulates many characteristic features as seen in patients with a moderate, self-limiting course of the disease such as specific patterns of respiratory tract inflammation, vascular endothelialitis, and age dependence. Among 4 other hamster species examined, the Roborovski dwarf hamster (Phodopus roborovskii) more closely mimics the disease in highly susceptible patients with frequent lethal outcome, including devastating diffuse alveolar damage and coagulopathy. Thus, different hamster species are available to mimic different courses of the wide spectrum of COVID-19 manifestations in humans. On the other hand, fewer diagnostic tools and information on immune functions and molecular pathways are available than in mice, which limits mechanistic studies and inference to humans in several aspects. Still, under pandemic conditions with high pressure on progress in both basic and clinically oriented research, the Syrian hamster has turned into the leading non-transgenic model at an unprecedented pace, currently used in innumerable studies that all aim to combat the impact of the virus with its new variants of concern. As in other models, its strength rests upon a solid understanding of its similarities to and differences from the human disease, which we review here

    mCLCA3 Modulates IL-17 and CXCL-1 Induction and Leukocyte Recruitment in Murine Staphylococcus aureus Pneumonia

    Get PDF
    The human hCLCA1 and its murine ortholog mCLCA3 (calcium-activated chloride channel regulators) are exclusively expressed in mucus cells and linked to inflammatory airway diseases with increased mucus production, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Both proteins have a known impact on the mucus cell metaplasia trait in these diseases. However, growing evidence points towards an additional role in innate immune responses. In the current study, we analyzed Staphylococcus aureus pneumonia, an established model to study pulmonary innate immunity, in mCLCA3-deficient and wild-type mice, focusing on the cellular and cytokine-driven innate inflammatory response. We compared clinical signs, bacterial clearance, leukocyte immigration and cytokine responses in the bronchoalveolar compartment, as well as pulmonary vascular permeability, histopathology, mucus cell number and mRNA expression levels of selected genes (mClca1 to 7, Muc5ac, Muc5b, Muc2, Cxcl-1, Cxcl-2, Il-17). Deficiency of mCLCA3 resulted in decreased neutrophilic infiltration into the bronchoalveolar space during bacterial infection. Only the cytokines IL-17 and the murine CXCL-8 homolog CXCL-1 were decreased on mRNA and protein levels during bacterial infection in mCLCA3-deficient mice compared to wild-type controls. However, no differences in clinical outcome, histopathology or mucus cell metaplasia were observed. We did not find evidence for regulation of any other CLCA homolog that would putatively compensate for the lack of mCLCA3. In conclusion, mCLCA3 appears to modulate leukocyte response via IL-17 and murine CXCL-8 homologs in acute Staphylococcus aureus pneumonia which is well in line with the proposed function of hCLCA1 as a signaling molecule acting on alveolar macrophages

    Microsatellites within the feline androgen receptor are suitable for X chromosome-linked clonality testing in archival material

    Get PDF
    Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene, was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls using X chromosome- linked clonality testing, further studies are necessary to establish this technique in the cat

    Modulation of the host Th1 immune response in pigeon protozoal encephalitis caused by Sarcocystis calchasi

    Get PDF
    Pigeon protozoal encephalitis (PPE) is an emerging central-nervous disease of domestic pigeons (Columba livia f. domestica) reported in Germany and the United States. It is caused by the apicomplexan parasite Sarcocystis calchasi which is transmitted by Accipter hawks. In contrast to other members of the Apicomplexa such as Toxoplasma and Plasmodium, the knowledge about the pathophysiology and host manipulation of Sarcocystis is scarce and almost nothing is known about PPE. Here we show by mRNA expression profiling a significant down-modulation of the interleukin (IL)-12/IL-18/interferon (IFN)-γ axis in the brains of experimentally infected pigeons during the schizogonic phase of disease. Concomitantly, no cellular immune response was observed in histopathology while immunohistochemistry and nested PCR detected S. calchasi. In contrast, in the late central-nervous phase, IFN-γ and tumor necrosis factor (TNF) α-related cytokines were significantly up-modulated, which correlated with a prominent MHC-II protein expression in areas of mononuclear cell infiltration and necrosis. The mononuclear cell fraction was mainly composed of T-lymphocytes, fewer macrophages and B-lymphocytes. Surprisingly, the severity and composition of the immune cell response appears unrelated to the infectious dose, although the severity and onset of the central nervous signs clearly was dose-dependent. We identified no or only very few tissue cysts by immunohistochemistry in pigeons with severe encephalitis of which one pigeon repeatedly remained negative by PCR despite severe lesions. Taken together, these observations may suggest an immune evasion strategy of S. calchasi during the early phase and a delayed-type hypersensitivity reaction as cause of the extensive cerebral lesions during the late neurological phase of disease

    Skin TLR7 triggering promotes accumulation of respiratory dendritic cells and natural killer cells.

    Get PDF
    The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11b(hi) DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity
    corecore