7,051 research outputs found

    Opposing shear senses in a subdetachment mylonite zone: Implications for core complex mechanics

    Get PDF
    [1] Global studies of metamorphic core complexes and low‐angle detachment faults have highlighted a fundamental problem: Since detachments excise crustal section, the relationship between the mylonitic rocks in their footwalls and the brittle deformation in their hanging walls is commonly unclear. Mylonites could either reflect ductile deformation related to exhumation along the detachment fault, or they could be a more general feature of the extending middle crust that has been “captured ” by the detachment. In the first case we would expect the kinematics of the mylonite zone to mirror the sense of movement on the detachment; in the second case both the direction and sense of shear in the mylonites could be different. The northern Snake Range décollement (NSRD) is a classic Basin and Range detachment fault with a well‐documented top‐east of displacement. We present structural, paleo-magnetic, geochronological, and geothermometric evidence to suggest that the mylonite zone below the NSRD locally experienced phases of both east ‐ and west‐directed shear, inconsistent with movement along a single detachment fault. We therefore propose that the footwall mylonites represent a predetachment dis-continuity in the middle crust that separated localized deformation above from distributed crustal flow below (localized‐distributed transition (LDT)). The mylonites were subsequently captured by a moderately dipping brittle detachment that soled down to the middle crust and exhumed them around a rolling hinge into a subhorizontal orientation at the surface, produc-ing the present‐day NSRD. In this interpretation the brittle hanging wall represents a series of rotated upper crustal normal faults, whereas the mylonitic footwall represents one or more exhumed middl

    Coupling of shells in a carbon nanotube quantum dot

    Full text link
    We systematically study the coupling of longitudinal modes (shells) in a carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to probe the excitation spectrum in parallel, perpendicular and rotating magnetic fields. The data is compared to a theoretical model including coupling between shells, induced by atomically sharp disorder in the nanotube. The calculated excitation spectra show good correspondence with experimental data.Comment: 8 pages, 4 figure

    Study of helium transfer technology for STICCR: Fluid management

    Get PDF
    The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate

    Thermal structure and exhumation history of the Lesser Himalaya in central Nepal

    Get PDF
    The Lesser Himalaya (LH) consists of metasedimentary rocks that have been scrapped off from the underthrusting Indian crust and accreted to the mountain range over the last ~20 Myr. It now forms a significant fraction of the Himalayan collisional orogen. We document the kinematics and thermal metamorphism associated with the deformation and exhumation of the LH, combining thermometric and thermochronological methods with structural geology. Peak metamorphic temperatures estimated from Raman spectroscopy of carbonaceous material decrease gradually from 520°–550°C below the Main Central Thrust zone down to less than 330°C. These temperatures describe structurally a 20°–50°C/km inverted apparent gradient. The Ar muscovite ages from LH samples and from the overlying crystalline thrust sheets all indicate the same regular trend; i.e., an increase from about 3–4 Ma near the front of the high range to about 20 Ma near the leading edge of the thrust sheets, about 80 km to the south. This suggests that the LH has been exhumed jointly with the overlying nappes as a result of overthrusting by about 5 mm/yr. For a convergence rate of about 20 mm/yr, this implies underthrusting of the Indian basement below the Himalaya by about 15 mm/yr. The structure, metamorphic grade and exhumation history of the LH supports the view that, since the mid-Miocene, the Himalayan orogen has essentially grown by underplating, rather than by frontal accretion. This process has resulted from duplexing at a depth close to the brittle-ductile transition zone, by southward migration of a midcrustal ramp along the Main Himalayan Thrust fault, and is estimated to have resulted in a net flux of up to 150 m^2/yr of LH rocks into the Himalayan orogenic wedge. The steep inverse thermal gradient across the LH is interpreted to have resulted from a combination of underplating and post metamorphic shearing of the underplated units

    Transcription factor functionality and transcription regulatory networks

    Get PDF
    Now that numerous high-quality complete genome sequences are available, many efforts are focusing on the second genomic code , namely the code that determines how the precise temporal and spatial expression of each gene in the genome is achieved. In this regard, the elucidation of transcription regulatory networks that describe combined transcriptional circuits for an organism of interest has become valuable to our understanding of gene expression at a systems level. Such networks describe physical and regulatory interactions between transcription factors (TFs) and the target genes they regulate under different developmental, physiological, or pathological conditions. The mapping of high-quality transcription regulatory networks depends not only on the accuracy of the experimental or computational method chosen, but also relies on the quality of TF predictions. Moreover, the total repertoire of TFs is not only determined by the protein-coding capacity of the genome, but also by different protein properties, including dimerization, co-factor interactions and post-translational modifications. Here, we discuss the factors that influence TF functionality and, hence, the functionality of the networks in which they operate

    Black Locust Effects on Forage Yield and Nutritive Quality Produced on Reclaimed Mined Land

    Get PDF
    Black locust (Robinia pseudoacacia L.) is a rapidly growing, leguminous tree species often used to stabilize disturbed sites. The objectives of this study were to measure the effect of black locust populations on understory forage production and livestock nutritive quality on reclaimed surface mined land. In two out of three years, forage dry matter yields harvested under a population of 1368 trees ha-1 were not different than the clear cut treatment (all trees removed). Forage dry matter production was significantly reduced at populations of 2736 and 4145 trees ha-1 due to slow and limited regrowth following harvest. Forage nutritive quality was not effected by black locust populations

    Domain wall dynamics in expanding spaces

    Get PDF
    We study the effects on the dynamics of kinks due to expansions and contractions of the space. We show that the propagation velocity of the kink can be adiabatically tuned through slow expansions/contractions, while its width is given as a function of the velocity. We also analyze the case of fast expansions/contractions, where we are no longer on the adiabatic regime. In this case the kink moves more slowly after an expansion-contraction cycle as a consequence of loss of energy through radiation. All these effects are numerically studied in the nonlinear Klein-Gordon equations (both for the sine-Gordon and for the phi^4 potential), and they are also studied within the framework of the collective coordinate evolution equations for the width and the center of mass of the kink. These collective coordinate evolution equations are obtained with a procedure that allows us to consider even the case of large expansions/contractions.Comment: LaTeX, 18 pages, 2 figures, improved version to appear in Phys Rev
    corecore