5,254 research outputs found

    Lightning current waveform measuring system

    Get PDF
    An apparatus is described for monitoring current waveforms produced by lightning strikes which generate currents in an elongated cable. These currents are converted to voltages and to light waves for being transmitted over an optical cable to a remote location. At the remote location, the waves are reconstructed back into electrical waves for being stored into a memory. The information is stored within the memory with a timing signal so that only different signals need be stored in order to reconstruct the wave form

    Single wall carbon nanotube double quantum dot

    Full text link
    We report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes, and gated by three narrow top-gate electrodes as well as a back-gate. We show that a bias spectroscopy plot on just one of the two quantum dots can be used to extract the addition energy of both quantum dots. Furthermore, honeycomb charge stability diagrams are analyzed by an electrostatic capacitor model that includes cross capacitances, and we extract the coupling energy of the double quantum dot.Comment: Published in Applied Physics Letters 4 December 2006. http://link.aip.org/link/?APL/89/23211

    The Corn Belt Multi-State Corn Nitrogen Rate Calculator: Not Reliable for Kentucky Corn Producers

    Get PDF
    Because of the rising price of nitrogen (N) fertilizer, university personnel across the country are in the process of fine tuning N recommendations for com. Historically, each state has had different N recommendations based on research results obtained in different production systems and growing environments across each state. Some states in the Com Belt have used a yield potential (yield goal) approach to N recommendations. The expected yield is multiplied by a factor (usually 1.2) and then N credits for previous crop, manure, etc. are subtracted. One problem with this method is that as com yields increase N recommendations also increase. While this might seem logical, some studies show that N requirements are rising at a much slower pace than com yield. This simply means the com plant is becoming a more efficient user of N. States using the yield goal approach are realizing that, with time, their recommendations are increasingly exceeding the needs of the crop. For this reason, they are considering alternatives to the yield goal approach

    The mission oriented terminal area simulation facility

    Get PDF
    The Mission Oriented Terminal Area Simulation (MOTAS) was developed to provide an ATC environment in which flight management and flight operations research studies can be conducted with a high degree of realism. This facility provides a flexible and comprehensive simulation of the airborne, ground-based and communication aspects of the airport terminal area environment. Major elements of the simulation are: an airport terminal area environment model, two air traffic controller stations, several aircraft models and simulator cockpits, four pseudo pilot stations, and a realistic air-ground communications network. MOTAS has been used for one study with the DC-9 simulator and a series of data link studies are planned in the near future

    Identification of Soil-Water Chemical Parameters for the Prediction and Treatment of Suspended Solids in Surface Water Reservoirs of Coal Mine Lands

    Get PDF
    High concentrations of suspended solids in coal mine sedimentation ponds are a factor in lowering water quality. This study focuses on the influence dissolved solids have on concentration and settling of suspended solids. Water samples from sedimentation ponds in Eastern and Western Kentucky were used to evaluate water composition in such ponds. Spoil samples from surface mine sites in both parts of the state were used to evaluate water composition released from the spoils upon introducing water. The results demonstrate that water quality emanating from coal spoils of Eastern and Western coal mines is dependent on the type of spoil and/or geologic strata represented. Water composition of randomly selected sedimentation ponds revealed that the relationship between electrical conductance (EC) in mmhos cm-1 and ionic strength (I) of water is I = 0.012 [EC]. Furthermore, it was determined that there is a linear relationship between the repulsive index, RI = [(0.012)(EC)]-1/2 (based somewhat loosely on double-layer theory), and suspended solids. Kinetic data on settling of suspended solids has shown that upon increasing the ionic strength of the water (consequently decreasing RI), the rate of settling increased dramatically. The critical RI at which complete removal of all suspended solids, estimated by graphic extrapolation, is shown to be dependent on the percent base saturation. The data also demonstrate that the critical RI (RI at maximum flocculation) varies depending on the spoils mineralogical and chemical composition. The overall study shows that decreases in suspended solids in coal mine sedimentation ponds can be brought about by relatively small increases in ionic strength. Several approaches as to how one might increase water ionic strength in sediment ponds are discussed

    Identification of Soil-Water Chemical Parameters for the Prediction and Treatment of Suspended Solids in Surface Water Reservoirs of Coal Mine Lands

    Get PDF
    High concentrations of suspended solids in coal mine sedimentation ponds are a factor in lowering water quality. Colloidal particle settling simulations were carried out in the laboratory to test the influence pH and dissolved solids have on concentration and settling rates of suspended solids. The results of the study reveal that the pH range of colloidal coflocculation for the samples tested is between 3.5 and 4.5. Furthermore, liming simulation of acidic sediments, as expected increased colloid dispersion. This increase was dependent on the magnitude of the sodium adsorption ratio (SAR). The greater SAR systems maintained a greater concentration of colloidal suspended particles. However, for the same SAR value when the ionic strength was increased from 4 meq L-1 to 8 meq L-1, sedimentation rate of colloidal particles decreased. The data also show evidence that for the same SAR values when substituting magnesium for calcium, the rate of particle settling increased for one sample but decreased for another. This unexpected behavior is under further investigation

    Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

    Get PDF
    By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.Comment: 5 pages, 3 figures; revised version as publishe

    Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots

    Get PDF
    We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic and inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond

    A simple proof of Perelman's collapsing theorem for 3-manifolds

    Full text link
    We will simplify earlier proofs of Perelman's collapsing theorem for 3-manifolds given by Shioya-Yamaguchi and Morgan-Tian. Among other things, we use Perelman's critical point theory (e.g., multiple conic singularity theory and his fibration theory) for Alexandrov spaces to construct the desired local Seifert fibration structure on collapsed 3-manifolds. The verification of Perelman's collapsing theorem is the last step of Perelman's proof of Thurston's Geometrization Conjecture on the classification of 3-manifolds. Our proof of Perelman's collapsing theorem is almost self-contained, accessible to non-experts and advanced graduate students. Perelman's collapsing theorem for 3-manifolds can be viewed as an extension of implicit function theoremComment: v1: 9 Figures. In this version, we improve the exposition of our arguments in the earlier arXiv version. v2: added one more grap

    Account-making: A model for understanding and resolving distressful reactions to retirement from sport

    Get PDF
    In this paper, we examine the account-making model of Harvey, Weber, and Orbuch(1990) as a framework for understanding negative reactions to retirement from competitive sport. Theoretical aspects of the model are first summarized, and a case study is then presented to illustrate the central role of account-making in the adjustment process for an Olympic gold medallist. We conclude by suggesting ways that sport psychology consultants can facilitate account-making and thereby help athletes to cope with distressful reactions to retirement
    corecore