11 research outputs found

    Les aérogels de pectine : matériaux avancés pour l'isolation thermique et la libération de médicaments

    Get PDF
    Aerogels are ultra-light, highly porous and nano-structured materials with high specific surface area. Bio-aerogels are a new generation of aerogels that are fully biomass-based, which opens up a lot of potentials in biomass valorization and life science applications. In this work pectin was used to produce bio- aerogels. Two main objectives were achieved : • The first was to understand and correlate the characteristics of pectin and the preparation conditions with the internal structure of aerogel and its physico-chemical properties. • The second was to evaluate and develop pectin aerogels as advanced bio-materials for the two different applications : thermal insulation and drug delivery. Various mechanisms of network formation, gelation and non-solvent induced phase separation, were demonstrated to play a very important role in aerogel morphology and properties. Thermal conductivity of pectin aerogels was very low, around 0.015 - 0.020 W/(m.K), and showing U-shape dependence on density. When used as drug delivery matrices, the kinetics of drug release was correlated with pectin aerogels’ structure and density. Composite cellulose-pectin and silica-pectin aerogels were synthesized and also used as drug carriers; a prolonged release was recorded. A high potential of pectin aerogels to be used as versatile bio-materials with advanced tunable functionalities was demonstrated.Les aérogels sont des matériaux nano-structurés ultralégers, hautement poreux et présentant une surface spécifique élevée. Les bio-aérogels sont une nouvelle génération d'aérogels entièrement bio-sourcés, offrant de ce fait de grands potentiels pour des applications à l’interface avec le vivant tout en valorisant la biomasse. Dans le cadre de cette thèse, la pectine a été utilisée pour produire des bio-aérogels. Deux principaux objectifs ont été atteints : • Le premier était de déterminer et de maîtriser les corrélations existantes entre les caractéristiques de la pectine et les conditions de préparation d’une part, avec la structure interne de l'aérogel et ses propriétés physico-chimiques d’autre part. • Le second était d’évaluer et développer les aérogels de pectine pour deux applications distinctes : l'isolation thermique et la libération de médicaments. Il a été établi que les différents mécanismes de formation du réseau, la gélification et la séparation de phase, jouaient un rôle majeur sur la morphologie et les propriétés finales de l'aérogel. La conductivité thermique des aérogels de pectine s'est révélée très faible, de l'ordre de 0,015 à 0,020 W/(m.K), et a présenté une courbe de dépendance en forme de U avec leurs densités. Les aérogels ont également été utilisés en tant que matrices supports de médicament. Les cinétiques de libération du médicament en milieu liquide ont été corrélées aux structures et densités des aérogels de pectine. Des aérogels composites, de type cellulose-pectine et silice-pectine, ont été préparés et utilisés comme supports de médicament menant à une libération prolongée du principe actif dans le temps. Dans cette thèse, nous avons mis en évidence le potentiel élevé des aérogels de pectine utilisés en tant que biomatériaux avancés, versatiles et aux fonctionnalités ajustables

    Pectin aerogels : advanced materials for thermal insulation and drug delivery

    No full text
    Les aérogels sont des matériaux nano-structurés ultralégers, hautement poreux et présentant une surface spécifique élevée. Les bio-aérogels sont une nouvelle génération d'aérogels entièrement bio-sourcés, offrant de ce fait de grands potentiels pour des applications à l’interface avec le vivant tout en valorisant la biomasse. Dans le cadre de cette thèse, la pectine a été utilisée pour produire des bio-aérogels. Deux principaux objectifs ont été atteints : • Le premier était de déterminer et de maîtriser les corrélations existantes entre les caractéristiques de la pectine et les conditions de préparation d’une part, avec la structure interne de l'aérogel et ses propriétés physico-chimiques d’autre part. • Le second était d’évaluer et développer les aérogels de pectine pour deux applications distinctes : l'isolation thermique et la libération de médicaments. Il a été établi que les différents mécanismes de formation du réseau, la gélification et la séparation de phase, jouaient un rôle majeur sur la morphologie et les propriétés finales de l'aérogel. La conductivité thermique des aérogels de pectine s'est révélée très faible, de l'ordre de 0,015 à 0,020 W/(m.K), et a présenté une courbe de dépendance en forme de U avec leurs densités. Les aérogels ont également été utilisés en tant que matrices supports de médicament. Les cinétiques de libération du médicament en milieu liquide ont été corrélées aux structures et densités des aérogels de pectine. Des aérogels composites, de type cellulose-pectine et silice-pectine, ont été préparés et utilisés comme supports de médicament menant à une libération prolongée du principe actif dans le temps. Dans cette thèse, nous avons mis en évidence le potentiel élevé des aérogels de pectine utilisés en tant que biomatériaux avancés, versatiles et aux fonctionnalités ajustables.Aerogels are ultra-light, highly porous and nano-structured materials with high specific surface area. Bio-aerogels are a new generation of aerogels that are fully biomass-based, which opens up a lot of potentials in biomass valorization and life science applications. In this work pectin was used to produce bio- aerogels. Two main objectives were achieved : • The first was to understand and correlate the characteristics of pectin and the preparation conditions with the internal structure of aerogel and its physico-chemical properties. • The second was to evaluate and develop pectin aerogels as advanced bio-materials for the two different applications : thermal insulation and drug delivery. Various mechanisms of network formation, gelation and non-solvent induced phase separation, were demonstrated to play a very important role in aerogel morphology and properties. Thermal conductivity of pectin aerogels was very low, around 0.015 - 0.020 W/(m.K), and showing U-shape dependence on density. When used as drug delivery matrices, the kinetics of drug release was correlated with pectin aerogels’ structure and density. Composite cellulose-pectin and silica-pectin aerogels were synthesized and also used as drug carriers; a prolonged release was recorded. A high potential of pectin aerogels to be used as versatile bio-materials with advanced tunable functionalities was demonstrated

    Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels

    No full text
    International audiencePectin aerogels were synthesized via dissolution-solvent exchange-drying with supercritical CO2. The goal was to correlate thermal conductivity with aerogel morphology and properties in order to understand how to obtain a thermal super-insulating material with the lowest possible conductivity. Polymer concentration, solution pH and presence of bivalent ions were varied to tune pectin gelation mechanism and the state of matter, solution or gel. For the first time for bio-aerogels, a U-shape curve of thermal conductivity as a function of aerogel density was obtained. It shows that to reach the lowest conductivity values, a compromise between density and pore sizes is needed to optimize the inputs from the conduction of solid and gaseous phases. The lowest value of conductivity, 0.015 W/m K, was for aerogels from non-gelled pectin solutions. Calcium-induced gelation leads to pectin aerogels with very low density, around 0.05 g/cm3, but with many macropores, thus reducing the contribution of Knudsen effect

    Tuning structure and properties of pectin aerogels

    No full text
    International audienc

    Nano-CoF3 prepared by direct fluorination with F2 gas: Application as electrode material in Li-ion battery

    No full text
    Nano-CoF3 powders were synthesized by direct fluorination at various temperatures (up to 300 °C) of cobalt nanoparticles and their electrochemical features in lithium battery were investigated. The structure and composition of the raw and fluorinated materials are explored by SEM/TEM, HRTEM, XRD and XPS experiments. The influence of the fluorination temperature on the crystallite size has been evidenced by XRD. It is shown that such fluorination process allows the direct synthesis of nano-CoF3, at TF2 = 100 °C. The XPS investigation of mixtures of CoF3 and acetylene black has shown that, when handled in very dry atmospheres, CoF3-based samples can be used to prepare electrodes for Li-ion batteries in safe conditions. The electrochemical reaction of nano-CoF3 powders vs. lithium metal studied in organic medium involves a conversion process as described in the case of cobalt oxide. Successive impedance measurements were carried out at different discharge states to follow the modifications occurring at the electrode/electrolyte interface during the discharge step. The evolution of the reversible capacity retention of Li+ vs. time capacity of the powdered materials as well as the cycle life of the battery were investigated as a function of the fluorination temperature used for the preparation of the cobalt fluoride nanopowders. The best electrochemical performances were obtained with nano-CoF3 powders prepared at fluorination temperature of 100 °C, for which a reversible capacity of about 390 mAh/g is obtained after subsequent cycles
    corecore