52 research outputs found

    An Acetyl-Methyl Switch Drives a Conformational Change in p53

    Get PDF
    Individual posttranslational modifications (PTMs) of p53 mediate diverse p53-dependent responses, however much less is known about the combinatorial action of adjacent modifications. Here, we describe crosstalk between the early DNA damage response mark p53K382me2 and the surrounding PTMs that modulate binding of p53 co-factors, including 53BP1 and p300. The 1.8 Å resolution crystal structure of the tandem Tudor domain (TTD) of 53BP1 in complex with p53 peptide acetylated at K381 and dimethylated at K382 (p53K381acK382me2) reveals that the dual PTM induces a conformational change in p53. The α-helical fold of p53K381acK382me2 positions the side chains of R379, K381ac, and K382me2 to interact with TTD concurrently, reinforcing a modular design of double PTM mimetics. Biochemical and NMR analyses show that other surrounding PTMs, including phosphorylation of serine/threonine residues of p53, affect association with TTD. Our findings suggest a novel PTM-driven conformation switch-like mechanism that may regulate p53 interactions with binding partners

    Dido3 PHD Modulates Cell Differentiation and Division

    Get PDF
    Death Inducer Obliterator 3 (Dido3) is implicated in the maintenance of stem cell genomic stability and tumorigenesis. Here, we show that Dido3 regulates the expression of stemness genes in embryonic stem cells through its plant homeodomain (PHD) finger. Binding of Dido3 PHD to histone H3K4me3 is disrupted by threonine phosphorylation that triggers Dido3 translocation from chromatin to the mitotic spindle. The crystal structure of Dido3 PHD in complex with H3K4me3 reveals an atypical aromatic-cage-like binding site that contains a histidine residue. Biochemical, structural, and mutational analyses of the binding mechanism identified the determinants of specificity and affinity and explained the inability of homologous PHF3 to bind H3K4me3. Together, our findings reveal a link between the transcriptional control in embryonic development and regulation of cell division.This research is supported by NIH grants GM096863 and GM101664 (to T.G.K.), GM068088 (to B.D.S.), and HL65440 (to M.G.) and Spanish government grants PS09/00572 (to K.H.M.v.W) and SAF2010-21295, PIB2010BZ-00564, and MITIC (S2010/BMD-2502) (to C.M.A.). K.H.M.v.W. is supported by a JAE-doc fellowship from the Spanish National Research Council (CSIC). S.B.R. is supported by the UNC Lineberger Comprehensive Cancer Center Basic Sciences Training Program (T32CA09156) and a Postdoctoral Fellowship from the American Cancer Society (PF-13-085-01-DMC). Financial support for NSLS comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the National Institutes of Health (NIH).Peer reviewe

    Efficacy and safety of single and repeated administration of 1 gram intravenous acetaminophen injection (paracetamol) for pain management after major orthopedic surgery

    No full text
    Background: Intravenous acetaminophen injection (paracetamol) is marketed in Europe for the management of acute pain. A repeated-dose, randomized, double-blind, placebo-controlled, three-parallel group study was performed to evaluate the analgesic efficacy and safety of intravenous acetaminophen as compared with its prodrug (propacetamol) and placebo. Propacetamol has been available in many European countries for more than 20 yr. Methods: After orthopedic surgery, patients reporting moderate to severe pain received either 1 g intravenous acetaminophen, 2 g propacetamol, or placebo at 6-h intervals over 24 h. Patients were allowed "rescue" intravenous patient-controlled analgesia morphine. Pain intensity, pain relief, and morphine use were measured at selected intervals. Safety was monitored through adverse event reporting, clinical examination, and laboratory testing. Results: One hundred fifty-one patients (intravenous acetaminophen: 49; propacetamol: 50; placebo: 52) received at least one dose of study medication. The intravenous acetaminophen and propacetamol groups differed significantly from the placebo group regarding pain relief from 15 min to 6 h (P < 0.05) and median time to morphine rescue (intravenous acetaminophen: 3 h; propacetamol: 2.6 h; placebo: 0.8 h). Intravenous acetaminophen and propacetamol significantly reduced morphine consumption over the 24-h period: The total morphine doses received over 24 h were 38.3 ؎ 35.1 mg for intravenous acetaminophen, 40.8 ؎ 30.2 mg for propacetamol, and 57. 4 ؎ 52.3 mg for placebo, corresponding to decreases of ؊33% (19 mg) and ؊29% (17 mg) for intravenous acetaminophen and propacetamol, respectively. Drug-related adverse events were reported in 8.2%, 50% (most of them local), and 17.3% o
    corecore