24 research outputs found

    An audit to determine the clinical effectiveness of a pathway for managing wound infection

    Get PDF
    Prevention of wound infection is a key objective in the planning of care for patients with wounds. The potential for wound infection, particularly in chronic wounds that are heavily contaminated with bacteria, can be high (Bowler et al, 2001). Wound infection can negatively affect the patient experience, causing pain, delayed healing and poor clinical outcomes (Butcher, 2011). This article outlines the introduction of a clinical pathway for identifying and managing wound infection in a community nursing service. The article sets out the results of an audit to investigate the efficacy of the pathway, and discusses the importance of identifying and managing wound infection risk in patient care

    Enhancing CAR T Cell Therapy Using Fab Based Constitutively Heterodimeric Cytokine Receptors

    Get PDF
    Adoptive T-cell therapy aims to achieve lasting tumor clearance, requiring enhanced engraftment and survival of the immune cells. Cytokines are paramount modulators of T-cell survival and proliferation. Cytokine receptors signal via ligand-induced dimerization, and this principle has been hijacked utilizing non-native dimerization domains. A major limitation of current technologies resides in the absence of a module that recapitulates the natural cytokine receptor heterodimeric pairing. To circumvent this, we created a new engineered cytokine receptor able to constitutively recreate receptor-heterodimer utilizing the heterodimerization domain derived from the IgG1 antibody (dFab_CCR). We found that the signal delivered by the dFab_CCR-IL2 proficiently mimicked the cytokine receptor heterodimerization, with transcriptomic signatures like those obtained by activation of the native IL2 receptor. Moreover, we found that this dimerization structure was agnostic, efficiently activating signaling through four cytokine receptor families. Using a combination of in vivo and in vitro screening approaches, we characterized a library of 18 dFab_CCRs co-expressed with a clinically relevant solid tumor-specific GD2-specific CAR. Based on this characterization, we suggest that the co-expression of either the common β-chain GMCSF or the IL18 dFab_CCRs is optimal to improve CAR T-cell expansion, engraftment, and efficacy. Our results demonstrate how Fab dimerization is efficient and versatile in recapitulating a cytokine receptor heterodimerization signal. This module could be applied for the enhancement of adoptive T-cell therapies, as well as therapies based on other immune cell types. Furthermore, these results provide a choice of cytokine signal to incorporate with adoptive T-cell therapies

    Tunable control of CAR T cell activity through tetracycline mediated disruption of protein-protein interaction

    Get PDF
    Chimeric antigen receptor (CAR) T cells are a promising form of cancer immunotherapy, although they are often associated with severe toxicities. Here, we present a split-CAR design incorporating separate antigen recognition and intracellular signaling domains. These exploit the binding between the tetracycline repressor protein and a small peptide sequence (TIP) to spontaneously assemble as a functional CAR. Addition of the FDA-approved, small molecule antibiotic minocycline, acts as an "off-switch" by displacing the signaling domain and down-tuning CAR T activity. Here we describe the optimization of this split-CAR approach to generate a CAR in which cytotoxicity, cytokine secretion and proliferation can be inhibited in a dose-dependent and reversible manner. Inhibition is effective during on-going CAR T cell activation and inhibits activation and tumor control in vivo. This work shows how optimization of split-CAR structure affects function and adds a novel design allowing easy CAR inhibition through an FDA-approved small molecule

    Exploration of T cell immune responses by expression of a dominant-negative SHP1 and SHP2

    Get PDF
    SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy

    Dual targeting of CD19 and CD22 against B-ALL using a novel high-sensitivity aCD22 CAR

    Get PDF
    CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3–6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831)

    Exploration of T cell immune responses by expression of a dominant-negative SHP1 and SHP2

    Get PDF
    SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy

    Engineering agnostic modules for the tuning of CAR T cell function

    No full text
    Chimeric antigen receptor (CAR) T cells constitute an effective cancer immunotherapy, yet several challenges remain. For example, although CD22 is a promising B-ALL target, selective pressure from CAR T cells reduces CD22 expression resulting in patient relapse. To circumvent this hurdle, I aimed to develop a module to improve CAR T cell sensitivity. CSK is an inhibitory kinase that negatively regulates T cell signalling. I envisioned that a dominant-negative CSK might improve CAR T cell sensitivity. Therefore, I engineered a number of dominant-negative iterations of CSK (dnCSK). The co-expression of dnCSK modules in different CAR T cell platforms was seen to enhance sensitivity, improving cytotoxicity and cytokine release (IFN-γ and IL-2) against low antigen density target cells. Another challenge for CAR T cell therapies is on-target off-tumour toxicity. The second aim was to develop a module enabling tuneable control of CAR T cell function. To do so, I employed a CSK mutant (CSKAS) that is inhibited by a PP1 analogue, 3-IBPP1. Co-expression of CSKAS in CD22 and GD2 targeting CAR T cells dampened CAR function in the absence of 3-IB-PP1. However, after the addition of 3-IB-PP1, both CD22 and GD2 targeting CAR T cells displayed improved function compared to control CAR T cells. An advantage of this approach is the lack of CAR architecture reengineering, permitting simple implementation into existing CAR platforms

    Diseño sonoro en un nivel de videojuego: Creación inmersiva de un entorno acústico integrado en Wwise y Unity

    Full text link
    [ES] Este trabajo consistirá en el diseño sonoro de un juego de temática vikinga, aplicando las características necesarias en todas las facetas para lograr un mayor grado de inmersión. Al analizar el software estándar en la industria y las técnicas de implementación, la banda sonora se completará con efectos de sonido y música a medida que han sido grabadas, editadas y mezcladas para ajustarse a las necesidades del juego.[EN] This project will consist of the sound design for a viking-themed game, applying the necessary characteristics in all aspects to achieve a higher degree of immersion. By analyzing industry-standard software and implementation techniques, the soundtrack will be completed with tailored sound effects and music that have been recorded, edited and mixed to suit the games needs.Grothier, JJHTD. (2019). Diseño sonoro en un nivel de videojuego: Creación inmersiva de un entorno acústico integrado en Wwise y Unity. Universitat Politècnica de València. http://hdl.handle.net/10251/128826TFG
    corecore