2,920 research outputs found

    An atom fiber for guiding cold neutral atoms

    Full text link
    We present an omnidirectional matter wave guide on an atom chip. The rotational symmetry of the guide is maintained by a combination of two current carrying wires and a bias field pointing perpendicular to the chip surface. We demonstrate guiding of thermal atoms around more than two complete turns along a spiral shaped 25mm long curved path (curve radii down to 200μ\mum) at various atom--surface distances (35-450μ\mum). An extension of the scheme for the guiding of Bose-Einstein condensates is outlined

    Warm dark matter at small scales: peculiar velocities and phase space density

    Full text link
    We study the scale and redshift dependence of the power spectra for density perturbations and peculiar velocities, and the evolution of a coarse grained phase space density for (WDM) particles that decoupled during the radiation dominated stage. The (WDM) corrections are obtained in a perturbative expansion valid in the range of redshifts at which N-body simulations set up initial conditions, and for a wide range of scales. The redshift dependence is determined by the kurtosis β2\beta_2 of the distribution function at decoupling. At large redshift there is an enhancement of peculiar velocities for β2>1\beta_2 > 1 that contributes to free streaming and leads to further suppression of the matter power spectrum and an enhancement of the peculiar velocity autocorrelation function at scales smaller than the free streaming scale. Statistical fluctuations of peculiar velocities are also suppressed on these scales by the same effect. In the linearized approximation, the coarse grained phase space density features redshift dependent (WDM) corrections from gravitational perturbations determined by the power spectrum of density perturbations and β2\beta_2. For β2>25/21\beta_2 > 25/21 it \emph{grows logarithmically} with the scale factor as a consequence of the suppression of statistical fluctuations. Two specific models for WDM are studied in detail. The (WDM) corrections relax the bounds on the mass.Comment: 22 pages, 9 figs, more explanations. Published versio

    A touching movement : force control turns machining robots into universal tools

    Full text link
    ABB has written a new chapter in the book of robot applications. While in the past it had been a tedious and time-consuming effort to program a robot for delicate fine-tuning operations, robots can now learn how to best manage such tasks themselves. This innovative approach can reduce overall programming times by up to 80 percent for robots used to grind castings, vastly improving productivity levels. With ABB’s new Flex Finishing system featuring RobotWare Machining FC (force control), one of the last real barriers to productivity improvement in this sector has been lifted

    Feasibility of detecting single atoms using photonic bandgap cavities

    Get PDF
    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped atoms into the mode of the PBG cavity.Comment: 11 pages, 5 figure

    Identification of H2_2CCC as a diffuse interstellar band carrier

    Full text link
    We present strong evidence that the broad, diffuse interstellar bands (DIBs) at 4881 and 5450\,\AA are caused by the B\,^1B1_1\,\leftarrow\,X\,^1A1_1 transition of H2_2CCC (l-C3_3H2_2). The large widths of the bands are due to the short lifetime of the B\,^1B1_1 electronic state. The bands are predicted from absorption measurements in a neon matrix and observed by cavity ring-down in the gas phase and show exact matches to the profiles and wavelengths of the two broad DIBs. The strength of the 5450\,\AA DIB leads to a l-C3_3H2_2 column density of 5×1014\sim5\times10^{14} cm2^{-2} towards HD\,183143 and 2×1014\sim2\times10^{14}\,cm2^{-2} to HD\,206267. Despite similar values of EE(BVB-V), the 4881 and 5450\,\AA DIBs in HD\,204827 are less than one third their strength in HD\,183143, while the column density of interstellar C3_3 is unusually high for HD\,204827 but undetectable for HD\,183143. This can be understood if C3_3 has been depleted by hydrogenation to species such as l-C3_3H2_2 towards HD\,183143. There are also three rotationally resolved sets of triplets of l-C3_3H2_2 in the 6150-6330\,\AA region. Simulations, based on the derived spectroscopic constants and convolved with the expected instrumental and interstellar line broadening, show credible coincidences with sharp, weak DIBs for the two observable sets of triplets. The region of the third set is too obscured by the α\alpha-band of telluric O2_2.Comment: 22 pages, 9 figure

    Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs

    Get PDF
    We construct a pairing based simulation-extractable SNARK (SE-SNARK) that consists of only 3 group elements and has highly efficient verification. By formally linking SE-SNARKs to signatures of knowledge, we then obtain a succinct signature of knowledge consisting of only 3 group elements. SE-SNARKs enable a prover to give a proof that they know a witness to an instance in a manner which is: (1) succinct - proofs are short and verifier computation is small; (2) zero-knowledge - proofs do not reveal the witness; (3) simulation-extractable - it is only possible to prove instances to which you know a witness, even when you have already seen a number of simulated proofs. We also prove that any pairing based signature of knowledge or SE-NIZK argument must have at least 3 group elements and 2 verification equations. Since our constructions match these lower bounds, we have the smallest size signature of knowledge and the smallest size SE-SNARK possible

    A Shuffle Argument Secure in the Generic Model

    Get PDF
    We propose a new random oracle-less NIZK shuffle argument. It has a simple structure, where the first verification equation ascertains that the prover has committed to a permutation matrix, the second verification equation ascertains that the same permutation was used to permute the ciphertexts, and the third verification equation ascertains that input ciphertexts were ``correctly\u27\u27 formed. The new argument has 3.53.5 times more efficient verification than the up-to-now most efficient shuffle argument by Fauzi and Lipmaa (CT-RSA 2016). Compared to the Fauzi-Lipmaa shuffle argument, we (i) remove the use of knowledge assumptions and prove our scheme is sound in the generic bilinear group model, and (ii) prove standard soundness, instead of culpable soundness

    A Subversion-Resistant SNARK

    Get PDF
    While succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs) are widely studied, the question of what happens when the CRS has been subverted has received little attention. In ASIACRYPT 2016, Bellare, Fuchsbauer and Scafuro showed the first negative and positive results in this direction, proving also that it is impossible to achieve subversion soundness and (even non-subversion) zero knowledge at the same time. On the positive side, they constructed an involved sound and subversion zero-knowledge argument system for NP. We show that Groth\u27s zk-SNARK for \textsc{Circuit-SAT} from EUROCRYPT 2016 can be made computationally knowledge-sound and perfectly composable Sub-ZK with minimal changes. We just require the CRS trapdoor to be extractable and the CRS to be publicly verifiable. To achieve the latter, we add some new elements to the CRS and construct an efficient CRS verification algorithm. We also provide a definitional framework for sound and Sub-ZK SNARKs and describe implementation results of the new Sub-ZK SNARK

    A multiwavelength approach to the SFR estimation in galaxies at intermediate redshifts

    Get PDF
    We use a sample of 7 starburst galaxies at intermediate redshifts (z ~ 0.4 and z ~ 0.8) with observations ranging from the observed ultraviolet to 1.4 GHz, to compare the star formation rate (SFR) estimators which are used in the different wavelength regimes. We find that extinction corrected Halpha underestimates the SFR, and the degree of this underestimation increases with the infrared luminosity of the galaxies. Galaxies with very different levels of dust extinction as measured with SFR(IR)/SFR(Halpha, uncorrected for extinction) present a similar attenuation A[Halpha], as if the Balmer lines probed a different region of the galaxy than the one responsible for the bulk of the IR luminosity for large SFRs. In addition, SFR estimates derived from [OII]3727 match very well those inferred from Halpha after applying the metallicity correction derived from local galaxies. SFRs estimated from the UV luminosities show a dichotomic behavior, similar to that previously reported by other authors in galaxies at z <~ 0.4. Here we extend this result up to z ~ 0.8. Finally, one of the studied objects is a luminous compact galaxy (LCG) that may be suffering similar dust-enshrouded star formation episodes. These results highlight the relevance of quantifying the actual L(IR) of LCGs, as well as that of a much larger and generic sample of luminous infrared galaxies, which will be possible after the launch of SIRTF.Comment: Accepted for publication in The Astrophysical Journa

    Evolution of density perturbations in a realistic universe

    Full text link
    Prompted by the recent more precise determination of the basic cosmological parameters and growing evidence that the matter-energy content of the universe is now dominated by dark energy and dark matter we present the general solution of the equation that describes the evolution of density perturbations in the linear approximation. It turns out that as in the standard CDM model the density perturbations grow very slowly during the radiation dominated epoch and their amplitude increases by a factor of about 4000 in the matter and later dark energy dominated epoch of expansion of the universe.Comment: 19 pages, 4 figure
    corecore