5,821 research outputs found
The Shane Wirtanen counts: Observability of the galaxy correlation function
For an explicit test of the ability to recover the galaxy two-point correlation function from the Lick catalog of Shane and Wirtanen, we have applied the reduction and analysis methods of Seidner et al. and Groth and Peebles to model galaxy distributions that have known plate and field "errors" and that are high-fidelity simulations of the Lick sample. The model galaxy space distribution is constructed with the Soneira-Peebles prescription, which generates model distributions which have two-, three-, and four-point correlation functions in good agreement with the observed correlation functions. The space distribution is projected onto the sky with and without plate "errors." The Seidner et al. analysis recovers the plate factors in the former case with an error of 6.3%, as originally estimated. The two-point correlation function estimated from the "corrected" model catalog reproduces the built-in correlation function including the break from the power law. This is also true if the angular scale of the break is increased or decreased by a factor of 1.76 from the observed
value. We also compare a map of the corrected counts with a map of the counts projected without plate errors and find that the corrected map is a good visual representation of the galaxy distribution. Finally, we construct a simulation which includes systematic variations in plate sensitivity with observer and time-so called "plate shape gradients." Once again, the correlation function of the model catalog reproduces the built in correlation function
Production and use of metals and oxygen for lunar propulsion
Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed
Luminosity Functions of Elliptical Galaxies at z < 1.2
The luminosity functions of E/S0 galaxies are constructed in 3 different
redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data
from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST
surveys. These independent luminosity functions show the brightening in the
luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of
significant number evolution.
This is the first direct measurement of the luminosity evolution of E/S0
galaxies, and our results support the hypothesis of a high redshift of
formation (z > 1) for elliptical galaxies, together with weak evolution of the
major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2
table
Structural validation of a realistic wing structure: the RIBES test article
Several experimental test cases are available in literature to study and validate fluid structure interaction methods. They, however,
focus the attention mainly on replicating typical cruising aerodynamic conditions forcing the adoption of fully steel made models
able to operate with the high loads generated in high speed facilities. This translates in a complete loss of similitude with typical
realistic aeronautical wing structures configurations. To reverse this trend, and to better study the aerolastic mechanism from a structural point of view, an aeroelastic measurement campaign was carried within the EU RIBES project. A half wing model for wind tunnel tests was designed and manufactured replicating a typical metallic wing box structure, producing a database of loads, pressure, stress and deformation measurements. In this paper the design, manufacturing and validation activities performed within the RIBES project are described, with a focus on the structural behavior of the test article. All experimental data and numerical models are made freely available to the scientific community
A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2
We have performed a search for halo white dwarfs as high proper motion
objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify
24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper
motion objects are identified as strong white dwarf candidates on the basis of
their position in a reduced proper motion diagram. We create a model of the
Milky Way thin disk, thick disk and stellar halo and find that this sample of
white dwarfs is clearly an excess above the < 2 detections expected from these
known stellar populations. The origin of the excess signal is less clear.
Possibly, the excess cannot be explained without invoking a fourth galactic
component: a white dwarf dark halo. We present a statistical separation of our
sample into the four components and estimate the corresponding local white
dwarf densities using only the directly observable variables, V, V-I, and mu.
For all Galactic models explored, our sample separates into about 3 disk white
dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin
and thick disk and the stellar and dark halo, and the subsequent calculation of
the local densities are sensitive to the input parameters of our model for each
Galactic component. Using the lowest mean mass model for the dark halo we find
a 7% white dwarf halo and six times the canonical value for the thin disk white
dwarf density (at marginal statistical significance), but possible systematic
errors due to uncertainty in the model parameters likely dominate these
statistical error bars. The white dwarf halo can be reduced to around 1.5% of
the halo dark matter by changing the initial mass function slightly. The local
thin disk white dwarf density in our solution can be made consistent with the
canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion
expande
The Morphologically Divided Redshift Distribution of Faint Galaxies
We have constructed a morphologically divided redshift distribution of faint
field galaxies using a statistically unbiased sample of 196 galaxies brighter
than I = 21.5 for which detailed morphological information (from the Hubble
Space Telescope) as well as ground-based spectroscopic redshifts are available.
Galaxies are classified into 3 rough morphological types according to their
visual appearance (E/S0s, Spirals, Sdm/dE/Irr/Pec's), and redshift
distributions are constructed for each type. The most striking feature is the
abundance of low to moderate redshift Sdm/dE/Irr/Pec's at I < 19.5. This
confirms that the faint end slope of the luminosity function (LF) is steep
(alpha < -1.4) for these objects. We also find that Sdm/dE/Irr/Pec's are fairly
abundant at moderate redshifts, and this can be explained by strong luminosity
evolution. However, the normalization factor (or the number density) of the LF
of Sdm/dE/Irr/Pec's is not much higher than that of the local LF of
Sdm/dE/Irr/Pec's. Furthermore, as we go to fainter magnitudes, the abundance of
moderate to high redshift Irr/Pec's increases considerably. This cannot be
explained by strong luminosity evolution of the dwarf galaxy populations alone:
these Irr/Pec's are probably the progenitors of present day ellipticals and
spiral galaxies which are undergoing rapid star formation or merging with their
neighbors. On the other hand, the redshift distributions of E/S0s and spirals
are fairly consistent those expected from passive luminosity evolution, and are
only in slight disagreement with the non-evolving model.Comment: 11 pages, 4 figures (published in ApJ
Shwartzman reaction after human renal homotransplantation.
In three human recipients, five renal homografts were destroyed within a few minutes to hours after their revascularization in the new host. The kidneys, removed one to 54 days later, had cortical necrosis. The major vessels were patent, but the arterioles and glomeruli were the site of fibrin deposition. There was little or no fixation of host immunoglobulins in the homografts. The findings were characteristic of a generalized Shwartzman reaction. Although the cause (or causes) of the Shwartzman reaction in our patients is not known, they may have been conditioned by the bacterial contamination and hemolysis that often attend hemodialysis, by immunosuppression and by the transplantation itself. Some of the patients have preformed lymphocytotoxic antibodies. Thus, certain patients may be predisposed. High-risk patients should be recognized and treated prophylactically with anticoagulants
A Morphological and Multicolor Survey for Faint QSOs in the Groth-Westphal Strip
Quasars representative of the populous faint end of the luminosity function
are frustratingly dim with m~24 at intermediate redshift; moreover groundbased
surveys for such faint QSOs suffer substantial morphological contamination by
compact galaxies having similar colors. In order to establish a more reliable
ultrafaint QSO sample, we used the APO 3.5-m telescope to take deep groundbased
U-band CCD images in fields previously imaged in V,I with WFPC2/HST. Our
approach hence combines multicolor photometry with the 0.1" spatial resolution
of HST, to establish a morphological and multicolor survey for QSOs extending
about 2 magnitudes fainter than most extant groundbased surveys. We present
results for the "Groth-Westphal Strip", in which we identify 10 high likelihood
UV-excess candidates having stellar or stellar-nucleus+galaxy morphology in
WFPC2. For m(606)<24.0 (roughly B<24.5) the surface density of such QSO
candidates is 420 (+180,-130) per square degree, or a surface density of 290
(+160,-110) per square degree with an additional V-I cut that may further
exclude compact emission line galaxies. Even pending confirming spectroscopy,
the observed surface density of QSO candidates is already low enough to yield
interesting comparisons: our measures agree extremely well with the predictions
of several recent luminosity function models.Comment: 29 pages including 6 tables and 7 figures. As accepted for
publication in The Astronomical Journal (minor revisions
- …
