3,863 research outputs found

    Molecular, morphological, and phytochemical evidence for a broad species concept of Plagiochila bifaria (Hepaticae)

    Get PDF
    Debate over the synonymy of the European Plagiochila killarniensis and the Neotropical P bifaria of R sect. Arrectae has focused on differences in secondary metabolite composition. The broad morphological species concept of R bifaria proposed in recent papers has now been tested by comparing nrDNA ITS1 and ITS2 sequences of R bifaria populations encompassing several different morpho- and chemotypes from the British Isles, Tenerife, Costa Rica, Brazil, Ecuador, and Bolivia, with sequences of other species of R sects. Arrectae, Rutilantes, and Fuscoluteae. Phylogenetic analyses demonstrate that specimens of P. bifaria form a well supported clade within Plagiochila sect. Arrectae. Sequences of R bifaria from the British Isles, Tenerife, and Ecuador, representing the "methyl everninate" chemotype, form a well supported subclade within the P bifaria clade. Sequences of specimens from Costa Rica, Brazil, and Bolivia are placed in the basal part of the R bifaria clade. The data support a broad species concept of P bifaria. The different chemotypes do not warrant distinct taxonomic ranks. Plagiochila centrifuga and P. compressula are treated as new synonyms of R bifaria

    Malleable Proof Systems and Applications

    Get PDF
    Malleability for cryptography is not necessarily an opportunity for attack, but in many cases a potentially useful feature that can be exploited. In this work, we examine notions of malleability for non-interactive zero-knowledge (NIZK) proofs. We start by defining a malleable proof system, and then consider ways to meaningfully control the malleability of the proof system, as in many settings we would like to guarantee that only certain types of transformations can be performed. We also define notions for the cases in which we do not necessarily want a user to know that a proof has been obtained by applying a particular transformation; these are analogous to function/circuit privacy for encryption. As our motivating application, we consider a shorter proof for verifiable shuffles. Our controlled-malleable proofs allow us for the first time to use one compact proof to prove the correctness of an entire multi-step shuffle. Each authority takes as input a set of encrypted votes and a controlled-malleable NIZK proof that these are a shuffle of the original encrypted votes submitted by the voters; it then permutes and re-randomizes these votes and updates the proof by exploiting its controlled malleability. As another application, we generically use controlled-malleable proofs to realize a strong notion of encryption security. Finally, we examine malleability in existing proof systems and observe that Groth-Sahai proofs are malleable. We then go beyond this observation by characterizing all the ways in which they are malleable, and use them to efficiently instantiate our generic constructions from above; this means we can instantiate our proofs and all their applications using only the Decision Linear (DLIN) assumption. Work done as an intern at Microsoft Research Redmon

    An atom fiber for guiding cold neutral atoms

    Full text link
    We present an omnidirectional matter wave guide on an atom chip. The rotational symmetry of the guide is maintained by a combination of two current carrying wires and a bias field pointing perpendicular to the chip surface. We demonstrate guiding of thermal atoms around more than two complete turns along a spiral shaped 25mm long curved path (curve radii down to 200μ\mum) at various atom--surface distances (35-450μ\mum). An extension of the scheme for the guiding of Bose-Einstein condensates is outlined

    The Influence of MHC and Immunoglobulins A and E on Host Resistance to Gastrointestinal Nematodes in Sheep

    Get PDF
    Gastrointestinal nematode parasites in farmed animals are of particular importance due to their effects on production. In Australia, it is estimated that the direct and indirect effects of parasite infestation cost the animal production industries hundreds of millions of dollars each year. The main factors considered by immunologists when studying gastrointestinal nematode infections are the effects the host's response has on the parasite, which immunological components are responsible for these effects, genetic factors involved in controlling immunological responses, and the interactions between these forming an interconnecting multilevel relationship. In this paper, we describe the roles of immunoglobulins, in particular IgA and IgE, and the major histocompatibility complex in resistance to gastrointestinal parasites in sheep. We also draw evidence from other animal models to support the involvement of these immune components. Finally, we examine how IgA and IgE exert their influence and how methods may be developed to manage susceptible animals

    Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship Between the Stellar and Total Masses of Disk Galaxies since z=1

    Full text link
    Using a combination of Keck spectroscopy and near-infrared imaging, we investigate the K-band and stellar mass Tully-Fisher relation for 101 disk galaxies at 0.2 < z < 1.2, with the goal of placing the first observational constraints on the assembly history of halo and stellar mass. Our main result is a lack of evolution in either the K-band or stellar mass Tully-Fisher relation from z = 0 - 1.2. Furthermore, although our sample is not statistically complete, we consider it suitable for an initial investigation of how the fraction of total mass that has condensed into stars is distributed with both redshift and total halo mass. We calculate stellar masses from optical and near-infrared photometry and total masses from maximum rotational velocities and disk scale lengths, utilizing a range of model relationships derived analytically and from simulations. We find that the stellar/total mass distribution and stellar-mass Tully-Fisher relation for z > 0.7 disks is similar to that at lower redshift, suggesting that baryonic mass is accreted by disks along with dark matter at z < 1, and that disk galaxy formation at z < 1 is hierarchical in nature. We briefly discuss the evolutionary trends expected in conventional structure formation models and the implications of extending such a study to much larger samples.Comment: ApJ, in press, 9 page

    Trapping and manipulating neutral atoms with electrostatic fields

    Full text link
    We report on experiments with cold thermal 7^7Li atoms confined in combined magnetic and electric potentials. A novel type of three-dimensional trap was formed by modulating a magnetic guide using electrostatic fields. We observed atoms trapped in a string of up to six individual such traps, a controlled transport of an atomic cloud over a distance of 400μ\mum, and a dynamic splitting of a single trap into a double well potential. Applications for quantum information processing are discussed.Comment: 4 pages, 4 figure

    Provenance-Centered Dataset of Drug-Drug Interactions

    Get PDF
    Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
    corecore