172 research outputs found

    Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis.

    Get PDF
    BACKGROUND: Nonselective beta-adrenergic blockers decrease portal pressure and prevent variceal hemorrhage. Their effectiveness in preventing varices is unknown. METHODS: We randomly assigned 213 patients with cirrhosis and portal hypertension (minimal hepatic venous pressure gradient [HVPG] of 6 mm Hg) to receive timolol, a nonselective beta-blocker (108 patients), or placebo (105 patients). The primary end point was the development of gastroesophageal varices or variceal hemorrhage. Endoscopy and HVPG measurements were repeated yearly. RESULTS: During a median follow-up of 54.9 months, the rate of the primary end point did not differ significantly between the timolol group and the placebo group (39 percent and 40 percent, respectively; P=0.89), nor were there significant differences in the rates of ascites, encephalopathy, liver transplantation, or death. Serious adverse events were more common among patients in the timolol group than among those in the placebo group (18 percent vs. 6 percent, P=0.006). Varices developed less frequently among patients with a baseline HVPG of less than 10 mm Hg and among those in whom the HVPG decreased by more than 10 percent at one year and more frequently among those in whom the HVPG increased by more than 10 percent at one year. CONCLUSIONS: Nonselective beta-blockers are ineffective in preventing varices in unselected patients with cirrhosis and portal hypertension and are associated with an increased number of adverse events. (ClinicalTrials.gov number, NCT00006398.

    Spironolactone Lowers Portal Hypertension by Inhibiting Liver Fibrosis, ROCK-2 Activity and Activating NO/PKG Pathway in the Bile-Duct-Ligated Rat

    Get PDF
    OBJECTIVE: Aldosterone, one of the main peptides in renin angiotensin aldosterone system (RAAS), has been suggested to mediate liver fibrosis and portal hypertension. Spironolactone, an aldosterone antagonist, has beneficial effect on hyperdynamic circulation in clinical practice. However, the mechanisms remain unclear. The present study aimed to investigate the role of spionolactone on liver cirrhosis and portal hypertension. METHODS: Liver cirrhosis was induced by bile duct ligation (BDL). Spironolactone was administered orally (20 mg/kg/d) after bile duct ligation was performed. Liver fibrosis was assessed by histology, Masson's trichrome staining, and the measurement of hydroxyproline and type I collagen content. The activation of HSC was determined by analysis of alpha smooth muscle actin (α-SMA) expression. Protein expressions and protein phosphorylation were determined by immunohistochemical staining and Western blot analysis, Messenger RNA levels by quantitative real time polymerase chain reaction (Q-PCR). Portal pressure and intrahepatic resistance were examined in vivo. RESULTS: Treatment with spironolactone significantly lowered portal pressure. This was associated with attenuation of liver fibrosis, intrahepatic resistance and inhibition of HSC activation. In BDL rat liver, spironolactone suppressed up-regulation of proinflammatory cytokines (TNFα and IL-6). Additionally, spironolactone significantly decreased ROCK-2 activity without affecting expression of RhoA and Ras. Moreover, spironolactone markedly increased the levels of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS and the activity of NO effector-protein kinase G (PKG) in the liver. CONCLUSION: Spironolactone lowers portal hypertension by improvement of liver fibrosis and inhibition of intrahepatic vasoconstriction via down-regulating ROCK-2 activity and activating NO/PKG pathway. Thus, early spironolactone therapy might be the optional therapy in cirrhosis and portal hypertension

    Physiological aspects of the determination of comprehensive arterial inflows in the lower abdomen assessed by Doppler ultrasound

    Get PDF
    Non-invasive measurement of splanchnic hemodynamics has been utilized in the clinical setting for diagnosis of gastro-intestinal disease, and for determining reserve blood flow (BF) distribution. However, previous studies that measured BF in a "single vessel with small size volume", such as the superior mesenteric and coeliac arteries, were concerned solely with the target organ in the gastrointestinal area, and therefore evaluation of alterations in these single arterial BFs under various states was sometimes limited to "small blood volumes", even though there was a relatively large change in flow. BF in the lower abdomen (BFAb) is potentially a useful indicator of the influence of comprehensive BF redistribution in cardiovascular and hepato-gastrointestinal disease, in the postprandial period, and in relation to physical exercise. BFAb can be determined theoretically using Doppler ultrasound by subtracting BF in the bilateral proximal femoral arteries (FAs) from BF in the upper abdominal aorta (Ao) above the coeliac trunk. Prior to acceptance of this method of determining a true BFAb value, it is necessary to obtain validated normal physiological data that represent the hemodynamic relationship between the three arteries. In determining BFAb, relative reliability was acceptably high (range in intra-class correlation coefficient: 0.85-0.97) for three arterial hemodynamic parameters (blood velocity, vessel diameter, and BF) in three repeated measurements obtained over three different days. Bland-Altman analysis of the three repeated measurements revealed that day-to-day physiological variation (potentially including measurement error) was within the acceptable minimum range (95% of confidence interval), calculated as the difference in hemodynamics between two measurements. Mean BF (ml/min) was 2951 ± 767 in Ao, 316 ± 97 in left FA, 313 ± 83 in right FA, and 2323 ± 703 in BFAb, which is in agreement with a previous study that measured the sum of BF in the major part of the coeliac, mesenteric, and renal arteries. This review presents the methodological concept that underlies BFAb, and aspects of its day-to-day relative reliability in terms of the hemodynamics of the three target arteries, relationship with body surface area, respiratory effects, and potential clinical usefulness and application, in relation to data previously reported in original dedicated research

    Quantitative modeling of the physiology of ascites in portal hypertension

    Get PDF
    Although the factors involved in cirrhotic ascites have been studied for a century, a number of observations are not understood, including the action of diuretics in the treatment of ascites and the ability of the plasma-ascitic albumin gradient to diagnose portal hypertension. This communication presents an explanation of ascites based solely on pathophysiological alterations within the peritoneal cavity. A quantitative model is described based on experimental vascular and intraperitoneal pressures, lymph flow, and peritoneal space compliance. The model's predictions accurately mimic clinical observations in ascites, including the magnitude and time course of changes observed following paracentesis or diuretic therapy

    The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni

    Get PDF
    BBSRC Grant (BB/K005448/1)Background The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail?s response to infection. Methodology/Principle findings Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail?s DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species? genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). Conclusions/Significance The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategiespublishersversionPeer reviewe
    corecore