11,721 research outputs found

    F-15 flight flutter test program

    Get PDF
    The modes to be observed during the F-15 flight flutter test program were selected on the basis of the results of analytical studies, wind tunnel tests, and ground vibration tests. The modes (both symmetrical and antisymmetrical) tracked on this basis were: fin first bending, fin torsion, fin tip roll, stabilator bending, stabilator pitch, boom lateral bending, boom torsion, boom vertical bending, wing first bending, wing second bending, wing first torsion, outer wing torsion, and aileron rotation. Data obtained for these various modes were evaluated in terms of damping versus airspeed at 1525 m (5000 ft), damping versus altitude at the cross-section Mach numbers (to extrapolate to the damping value to be expected at sea level), and flutter boundaries on the basis of flutter margin of various modal pairs representing potential flutter mechanisms. Results of these evaluations are summarized in terms of minimum predicted flutter margin for the various mechanisms

    Soft deformable self-propelled particles

    Full text link
    In this work we investigate the collective behavior of self-propelled particles that deform due to local pairwise interactions. We demonstrate that this deformation alone can induce alignment of the velocity vectors. The onset of collective motion is analyzed. Applying a Gaussian-core repulsion between the particles, we find a transition to disordered non-collective motion under compression. We here explain that this reflects the reentrant fluid behavior of the general Gaussian-core model now applied to a self-propelled system. Truncating the Gaussian potential can lead to cluster crystallization or more disordered cluster states. For intermediate values of the Gaussian-core potential we for the first time observe laning for deformable self-propelled particles. Finally, without the core potential, but including orientational noise, we connect our description to the Vicsek approach for self-propelled particles with nematic alignment interactions.Comment: 6 pages, 7 figure

    Thermal and Non-thermal Plasmas in the Galaxy Cluster 3C 129

    Get PDF
    We describe new Chandra spectroscopy data of the cluster which harbors the prototypical "head tail" radio galaxy 3C 129 and the weaker radio galaxy 3C 129.1. We combined the Chandra data with Very Large Array (VLA) radio data taken at 0.33, 5, and 8 GHz (archival data) and 1.4 GHz (new data). We also obtained new HI observations at the Dominion Radio Astrophysical Observatory (DRAO) to measure the neutral Hydrogen column density in the direction of the cluster with arcminute angular resolution. The Chandra observation reveals extended X-ray emission from the radio galaxy 3C 129.1 with a total luminosity of 1.5E+41 erg/s. The X-ray excess is resolved into an extended central source of ~2 arcsec (1 kpc) diameter and several point sources with an individual luminosity up to 2.1E+40 erg/s. In the case of the radio galaxy 3C 129, the Chandra observation shows, in addition to core and jet X-ray emission reported in an earlier paper, some evidence for extended, diffuse X-ray emission from a region east of the radio core. The 12 arcsec x 36 arcsec (6 kpc x 17 kpc) region lies "in front" of the radio core, in the same direction into which the radio galaxy is moving. We use the radio and X-ray data to study in detail the pressure balance between the non-thermal radio plasma and the thermal Intra Cluster Medium (ICM) along the tail of 3C 129 which extends over 15 arcmin (427 kpc). Depending on the assumed lower energy cutoff of the electron energy spectrum, the minimum pressure of the radio plasma lies a factor of between 10 and 40 below the ICM pressure for a large part of the tail. We discuss several possibilities to explain the apparent pressure mismatch.Comment: Accepted for publication in MNRAS. Refereed manuscript. 14 pages, 8 figures, additional panel of Fig. 3 shows asymmetric ICM distributio

    New Physics Effects From B Meson Decays

    Full text link
    In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from B-meson decays, taking R-parity conserving and violating supersymmetry as illustrative examples.Comment: Talk given at the Sixth Workshop on High Energy Particle Phenomenology (WHEPP-6), Chennai (Madras), India. Includes 2 epsf figure

    Turbulent convection: comparing the moment equations to numerical simulations

    Get PDF
    The non-local hydrodynamic moment equations for compressible convection are compared to numerical simulations. Convective and radiative flux typically deviate less than 20% from the 3D simulations, while mean thermodynamic quantities are accurate to at least 2% for the cases we have investigated. The moment equations are solved in minutes rather than days on standard workstations. We conclude that this convection model has the potential to considerably improve the modelling of convection zones in stellar envelopes and cores, in particular of A and F stars.Comment: 10 pages (6 pages of text including figure captions + 4 figures), Latex 2e with AAS Latex 5.0 macros, accepted for publication in ApJ

    Towards granular hydrodynamics in two-dimensions

    Full text link
    We study steady-state properties of inelastic gases in two-dimensions in the presence of an energy source. We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that the system can achieve a nonequilibrium steady-state with asymmetric velocity distributions, and we discuss the conditions under which such situations occur.Comment: 8 pages, 9 figures, revtex, references added, also available from http://arnold.uchicago.edu/?ebn

    Constraining the CKM Parameters using CP Violation in semi-leptonic B Decays

    Get PDF
    We discuss the usefulness of the CP violating semi-leptonic asymmetry a_{SL} not only as a signal of new physics, but also as a tool in constraining the CKM parameters. We show that this technique could yield useful results in the first years of running at the B factories. We present the analysis graphically in terms of M_{12}, the dispersive part of the B-Bbar mixing amplitude. This is complementary to the usual unitarity triangle representation and often allows a cleaner interpretation of the data.Comment: 15 pages REVTEX, 7 figure

    Organization of Multinational Activities and Ownership Structure

    Get PDF
    We develop a model in which multinational investors decide about the modes of organization, the locations of production, and the markets to be served. Foreign investments are driven by market-seeking and cost-reducing motives. We further assume that investors face costs of control that vary among sectors and increase in distance. The results show that (i) production intensive sectors are more likely to operate a foreign business independent of the investment motive, (ii) that distance may have a non-monotonous effect on the likelihood of horizontal investments, and (iii) that globalization, if understood as reducing distance, leads to more integration

    Correlations in a Confined gas of Harmonically Interacting Spin-Polarized Fermions

    Full text link
    For a fermion gas with equally spaced energy levels, the density and the pair correlation function are obtained. The derivation is based on the path integral approach for identical particles and the inversion of the generating functions for both static responses. The density and the pair correlation function are evaluated explicitly in the ground state of a confined fermion system with a number of particles ranging from 1 to 220 and filling the Fermi level completely.Comment: 11 REVTEX pages, 3 postscript figures. Accepted for publication in Phys. Rev. E, Vol. 58 (August 1, 1998
    corecore