32 research outputs found

    Knowing no fear

    Get PDF
    People with brain injuries involving the amygdala are often poor at recognizing facial expressions of fear, but the extent to which this impairment compromises other signals of the emotion of fear has not been clearly established. We investigated N.M., a person with bilateral amygdala damage and a left thalamic lesion, who was impaired at recognizing fear from facial expressions. N.M. showed an equivalent deficit affecting fear recognition from body postures and emotional sounds. His deficit of fear recognition was not linked to evidence of any problem in recognizing anger (a common feature in other reports), but for his everyday experience of emotion N.M. reported reduced anger and fear compared with neurologically normal controls. These findings show a specific deficit compromising the recognition of the emotion of fear from a wide range of social signals, and suggest a possible relationship of this type of impairment with alterations of emotional experience

    Do Synesthetes Have a General Advantage in Visual Search and Episodic Memory? A Case for Group Studies

    Get PDF
    BACKGROUND: Some studies, most of them case-reports, suggest that synesthetes have an advantage in visual search and episodic memory tasks. The goal of this study was to examine this hypothesis in a group study. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we tested thirteen grapheme-color synesthetes and we compared their performance on a visual search task and a memory test to an age-, handedness-, education-, and gender-matched control group. The results showed no significant group differences (all relevant ps>.50). For the visual search task effect sizes indicated a small advantage for synesthetes (Cohen's d between .19 and .32). No such advantage was found for episodic memory (Cohen's d<.05). CONCLUSIONS/SIGNIFICANCE: The results indicate that synesthesia per se does not seem to lead to a strong performance advantage. Rather, the superior performance of synesthetes observed in some case-report studies may be due to individual differences, to a selection bias or to a strategic use of synesthesia as a mnemonic. In order to establish universal effects of synesthesia on cognition single-case studies must be complemented by group studies

    The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity

    Get PDF
    Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing

    Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesia

    No full text
    Synaesthesia is an unusual perceptual phenomenon in which events in one sensory modality induce vivid sensations in another(1,2). Individuals may 'taste' shapes(3),'hear' colours', or 'feel' sounds(5). Synaesthesia was first described over a century ago(6), but little is known about its underlying causes or its effects on cognition. Most reports have been anecdotal or have focused on isolated unusual cases(3,7-9). Here we report an investigation of 15 individuals with colour-graphemic synaesthesia, each of whom experiences idiosyncratic but highly consistent colours for letters and digits. Using a colour-form interference paradigm, we show that induced synaesthetic experiences cannot be consciously suppressed even when detrimental to task performance. In contrast, if letters and digits are presented briefly and masked, so that they are processed but unavailable for overt report, the synaesthesia is eliminated. These results show that synaesthetic experiences fan be prevented despite substantial processing of the sensory stimuli that otherwise trigger them. We conclude that automatic binding of colour and alphanumeric form in synaesthesia arises after initial processes of letter and digit recognition are complete
    corecore