30 research outputs found

    Knowing no fear

    Get PDF
    People with brain injuries involving the amygdala are often poor at recognizing facial expressions of fear, but the extent to which this impairment compromises other signals of the emotion of fear has not been clearly established. We investigated N.M., a person with bilateral amygdala damage and a left thalamic lesion, who was impaired at recognizing fear from facial expressions. N.M. showed an equivalent deficit affecting fear recognition from body postures and emotional sounds. His deficit of fear recognition was not linked to evidence of any problem in recognizing anger (a common feature in other reports), but for his everyday experience of emotion N.M. reported reduced anger and fear compared with neurologically normal controls. These findings show a specific deficit compromising the recognition of the emotion of fear from a wide range of social signals, and suggest a possible relationship of this type of impairment with alterations of emotional experience

    Do Synesthetes Have a General Advantage in Visual Search and Episodic Memory? A Case for Group Studies

    Get PDF
    BACKGROUND: Some studies, most of them case-reports, suggest that synesthetes have an advantage in visual search and episodic memory tasks. The goal of this study was to examine this hypothesis in a group study. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we tested thirteen grapheme-color synesthetes and we compared their performance on a visual search task and a memory test to an age-, handedness-, education-, and gender-matched control group. The results showed no significant group differences (all relevant ps>.50). For the visual search task effect sizes indicated a small advantage for synesthetes (Cohen's d between .19 and .32). No such advantage was found for episodic memory (Cohen's d<.05). CONCLUSIONS/SIGNIFICANCE: The results indicate that synesthesia per se does not seem to lead to a strong performance advantage. Rather, the superior performance of synesthetes observed in some case-report studies may be due to individual differences, to a selection bias or to a strategic use of synesthesia as a mnemonic. In order to establish universal effects of synesthesia on cognition single-case studies must be complemented by group studies

    The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity

    Get PDF
    Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing

    Anomalous perception in synaesthesia: A cognitive neuroscience perspective

    No full text
    An enduring question in cognitive neuroscience is how the physical properties of the world are represented in the brain to yield conscious perception. In most people, a particular physical stimulus gives rise to a unitary, unimodal perceptual experience. So, light energy leads to the sensation of seeing, whereas sound waves produce the experience of hearing. However, for individuals with the rare phenomenon of synaesthesia, specific physical stimuli consistently induce more than one perceptual experience. For example, hearing particular sounds might induce vivid experiences of colour, taste or odour, as might the sight of visual symbols, such as letters or digits. Here we review the latest findings on synaesthesia, and consider its possible genetic, neural and cognitive bases. We also propose a neurocognitive framework for understanding such anomalous perceptual experiences
    corecore