11 research outputs found

    Application of social media in the environment and health professional community

    Get PDF
    The purpose of the EU FP6 funded coordination action HENVINET was to create a permanent network of environment and health professionals. The main outcome is a networking portal (http://www.henvinet.eu), based on the concepts of social media to support communication between professional stakeholders in the environment and health fields. Its aim is to enable sharing of relevant information in an innovative and interactive manner to eventually support policy making. A social networking tool is not necessarily a typical platform for communication in the professional context, or between scientists and decision-makers. The aim of this paper is to look upon the use of social media in relevant professional communities in the light of the HENVINET experience, and to reflect on the acceptance and usefulness of such a new approach

    Organizing the Indicator Zoo: Can a New Taxonomy Make It Easier for Citizen Science Data to Contribute to the United Nations Sustainable Development Goal Indicators?

    Get PDF
    In order to measure progress towards the aims outlined by the United Nations (UN) 2030 Agenda, data are needed for the different indicators that are linked to each UN Sustainable Development Goal (SDG). Where statistical or scientific data are not sufficient or available, alternative data sources, such as data from citizen science (CS) activities, could be used. Statistics Norway, together with the Norwegian Association of Local and Regional Authorities, have developed a taxonomy for classifying indicators that are intended to measure the SDGs. The purpose of this taxonomy is to sort, evaluate, and compare different SDG indicators and to assess their usefulness by identifying their central properties and characteristics. This is done by organizing central characteristics under the three dimensions of Goal, Perspective, and Quality. The taxonomy is designed in a way that can help users to find the right indicators across sectors to measure progress towards the SDGs depending on their own context and strategic priorities. The Norwegian taxonomy also offers new opportunities for the re-use of data collected through CS activities. This paper presents the taxonomy and demonstrates how it can be applied for an indicator based on a CS data set, and we also suggest further use of CS data

    Public Perception of Urban Air Quality Using Volunteered Geographic Information Services

    Get PDF
    Investigating perceived air quality (AQ) in urban areas is a rather new topic of interest. Papers presenting results from studies on perception of AQ have thus far focused on the individual characteristics leading to a certain AQ perception or have compared personal perception with on-site measurements. Here we present a novel approach, namely applying volunteered geographic information (VGI) technologies in urban AQ monitoring. We present two smartphone applications that have been developed and applied in two EU projects (FP7 CITI-SENSE and H2020 hackAIR) to obtain citizens’ perception of AQ. We focus on observations reported through the smartphone apps for the greater Oslo area in Norway. In order to evaluate whether the reports on perceived AQ contain information about the actual spatial patterns of AQ, we carried out a comparison of the perception data against the output from the high-resolution urban AQ model EPISODE. The results indicate an association between modelled annual average pollutant concentrations and the provided perception reports. This demonstrates that the spatial patterns of perceived AQ are not entirely random but follow to some extent what would be expected due to proximity of emission sources and transport. This information shows that VGI about citizens’ perception of AQ has the potential to identify areas with low environmental quality for urban development

    Oslo Citizens’ Observatory. Results from the Oslo Empowerment Initiative as part of the CITI-SENSE project.

    No full text
    The CITI-SENSE project has been created to develop Citizens’ Observatories in different cities in Europe. By using a variety of low-cost sensors, citizens should be empowered to influence community policy and decision making in the area of air quality. In the framework of this project, we carried out different case studies (Empowerment Initiatives – EIs) in the fields of Urban Air Quality, Public Spaces and School Indoor Air Quality in the following nine cities: Barcelona (Spain), Belgrade (Serbia), Edinburgh (UK), Haifa (Israel), Oslo (Norway), Ostrava (Czech Republic), Ljubljana (Slovenia), Vienna (Austria) and Vitoria-Gasteiz (Spain). This document reports the results from the activities within the Oslo Citizens’ Observatory, carried out between December 2015 and September 2016. In this report, we present tools that have been used, results from collected data and measurements and the users’ evaluation of the tools and the project activities in Oslo. We wrap up with some concluding remarks and the lessons learned for engaging the public in environmental monitoring

    Transformative Potential and Learning Outcomes of Air Quality Citizen Science Projects in High Schools Using Low-Cost Sensors

    No full text
    The rise of advanced ICT technologies has made it possible to apply low-cost sensor systems for measuring air quality in citizen science projects, including education. High school students in Norway used these sensor systems in a citizen science project to design, carry out, and evaluate their own research projects on air quality. An impact assessment framework was designed to assess the impact of these activities, considering five areas of impact: scientific, social, economic, political, and environmental. In addition, the framework also considers the transformative potential of the citizen science pilot, i.e., the degree to which the pilot can help to change, alter, or replace current systems, and the business-as-usual in one or more fields such as knowledge production or environmental protection. Data for this assessment were gathered in the form of questionnaires that the students had to complete before starting and after finalizing the pilot activities. The results showed positive impacts on learning, a pro-environmental world view, and an increase in pro-science attitudes and interest in scientific and environmental-related topics at the end of the pilot activities. Only weak impacts were measured for behavioral change. The activities showed transformative potential, which makes the student activities an example of good practice for citizen science activities on air quality with low-cost sensors

    Dissemination Strategy for the NanoSafety Cluster 27.09.2011, Extra Deliverable 4.12 .NanoImpactNet Report

    Get PDF
    So that the widest possible group of European nanosafety stakeholders are able to meet, interact, benefit from the work of NSC project members and work using reproducible methods using the same terms, there must be coordination. The following requirements should be clearly defined in the formulation of all new EC sponsored nanosafety-related projects and should be strongly encouraged in existing NSC projects

    Ren luft for alle. ExtraStiftelsen project 2019/HE1-263918.

    No full text
    In 2019, in the framework of Oslo being European Green Capital, NILU invited students from elementary schools to measure air pollution in their neighbourhood, using simple and affordable measuring methods based on paper and Vaseline. The students prepared the measuring devices and selected the places where they wanted to monitor. After one week, they retrieved the devices and used a scale to compare the amount of dust fastened to the Vaseline. All of the data gathered by the students was uploaded by the teachers to a website (https://luftaforalle.nilu.no/), where a map showed all the results from the participating schools. The school campaign has helped researchers to get data on particulate matter from many places where data was not available, and has increased awareness among the children about the sustainability challenges cities are facing

    Implementing Citizen Science in Primary Schools: Engaging Young Children in Monitoring Air Pollution

    No full text
    Most European cities have air pollution levels that exceed the threshold for human health protection. Children are sensitive to air pollution and thus it is important to ensure they are not exposed to high concentrations of air pollutants. In order to make a positive change toward cleaner air, a joint effort is needed, involving all civil society actors. Schools and local communities have a decisive role, and can, for example, become engaged in citizen science initiatives and knowledge coproduction. In 2019, with the aim of raising awareness for air quality, NILU developed a citizen science toolbox to engage primary schools in monitoring air quality using a simple and affordable measuring method based on paper and petroleum jelly. This is a very visual method, where the students can clearly see differences from polluted and non-polluted places by looking at “how dirty” is the paper. In addition to the qualitative analysis, we have developed an air meter scale making possible for the students to obtain an indicative measurement of the air pollution level. The comparison between the paper and petroleum jelly method against reference PM10 data collected at two official air quality stations showed a good agreement. The method is a strong candidate for dust monitoring in citizen science projects, making participation possible and empowering people with simple tools at hand. The toolbox is targeted at primary schools and children aged 6–12 years, although it can easily be adapted to other age groups. The main objective of the toolbox is to involve young children who are usually not targeted in air quality citizen science activities, to develop research skills and critical thinking, as well as increase their awareness about the air they breathe. The toolbox is designed to engage students in hands-on activities, that challenge them to create hypotheses, design scientific experiments, draw conclusions and find creative solutions to the air pollution problem. The toolbox includes all the necessary material for the teachers, including guidance, background information and templates facilitating the incorporation in the school curricula. The toolbox was launched as part of the Oslo European Green Capital in March 2019 and was later included as part of the European Clean Air Day initiative coordinated by the European Citizen Science Association (ECSA) working group on air quality. A total of 30 schools and 60 4th grade classes (aged 8–9 years) participated in the Oslo campaign. The citizen science approach employed in the schools, combined the four key elements that promote knowledge integration: elicit ideas, add new ideas, distinguish among ideas and reflect and sort out ideas. Although the main goal of the study was to provide simple but robust tools for engaging young children in air quality monitoring, we also carried out ex-ante and ex-post evaluations in 12 of the participating classes using a 10-question multiple choice test to have an indication of the contribution of the activity to knowledge integration. The results show that there is an increase in the number of correct answers, as well as a reduction in the misconceptions after conducting the activity. These results indicate that applying a citizen science approach improved science instruction and helped knowledge integration by including students' views and taking advantage of the diverse ideas students generated. Citizen science gives learners an insight into the ways that scientists generate solutions for societal problems. But more important, citizen science provides a way to differ from the classic view of the learner as an absorber of information, by considering the social context of instruction and making the topic personally relevant

    Public Perception of Urban Air Quality Using Volunteered GeographicInformation Services

    Get PDF
    Investigating perceived air quality (AQ) in urban areas is a rather new topic of interest. Papers presenting results from studies on perception of AQ have thus far focused on the individual characteristics leading to a certain AQ perception or have compared personal perception with on-site measurements. Here we present a novel approach, namely applying volunteered geographic information (VGI) technologies in urban AQ monitoring. We present two smartphone applications that have been developed and applied in two EU projects (FP7 CITI-SENSE and H2020 hackAIR) to obtain citizens’ perception of AQ. We focus on observations reported through the smartphone apps for the greater Oslo area in Norway. In order to evaluate whether the reports on perceived AQ contain information about the actual spatial patterns of AQ, we carried out a comparison of the perception data against the output from the high-resolution urban AQ model EPISODE. The results indicate an association between modelled annual average pollutant concentrations and the provided perception reports. This demonstrates that the spatial patterns of perceived AQ are not entirely random but follow to some extent what would be expected due to proximity of emission sources and transport. This information shows that VGI about citizens’ perception of AQ has the potential to identify areas with low environmental quality for urban development

    Assessment of the State of Interdisciplinary Climate and Environmental Research

    No full text
    På oppdrag fra Klima- og miljødepartementet har vi i dette arbeidet svart ut en rekke spørsmål om tverrfaglig klima- og miljøforskning, samt noen spørsmål om transfaglig forskning. Vi har samlet inn data gjennom flere litteratursøk, intervjuer, én spørreundersøkelse, workshop mm. Alle litteratursøk dekker klima og miljøpublikasjoner uavhengig av hvor forskningen er gjort. Alle andre funn fra forskningsmiljøene er avgrenset til grunnforskning og anvendt forskning ved universitetene og forskningsinstitutt som mottar grunnfinansiering. Bruk av klima- og miljøforskning i forvaltningen og involvering av forvaltningen er avgrenset til statlig forvaltning. Det er usikkerhet i våre funn, men funnene vurderes likevel som tilstrekkelig robuste til å svare ut spørsmålene. Vi finner at bruken av begrepet tverrfaglig er mangfoldig. Et bredt antall fag og institusjoner er involvert i slik forskning og det samarbeides mest på tvers av naturvitenskap og samfunnsvitenskap. Vi har funnet at andelen klima- og miljøpublikasjoner som er tverrfaglig på tvers av minst to av naturvitenskap, samfunnsvitenskap, humaniora og rettsvitenskap, er 24 prosent. I Norge oppleves behovet for tverrfaglig klima- og miljøforskning som økende. Den viktigste driveren for økningen er samfunnsbehovene. Det forskes også mer tverrfaglig. Et globalt litteratursøk antyder imidlertid at antall tverrfaglige klima- og miljøpublikasjoner og totalt antall klima- og miljøpublikasjoner øker med omtrent samme takt slik at andelen av publikasjoner som er tverrfaglige, endres i liten grad. Monofaglig praksis er vanligere enn flerfaglig. Flerfaglighet er vanligere enn tverrfaglighet. Det oppleves å være betydelige barrierer for tverrfaglig klima- og miljøforskning. Faglige barrierer og manglende merittering for tverrfaglig forskning løftes spesielt fram, men også andre barrierer er betydelige. Det er relativt liten forskjell i opplevelse av barrierer for forskere ved universitetene og forskningsinstitutter. For transfaglig forskning peker både forvaltning og forskere på mangel på tid som en sentral barriere. Forskning på tverrfaglig og transfaglig forskning øker.publishedVersio
    corecore