496 research outputs found

    Probing unitary two-time correlations in a neutral atom quantum simulator

    Full text link
    Measuring unitarily-evolved quantum mechanical two-time correlations is challenging in general. In a recent paper [P.~Uhrich {\em et al.}, Phys.\ Rev.~A {\bf 96}, 022127 (2017)], a considerable simplification of this task has been pointed out to occur in spin-1/21/2 lattice models, bringing such measurements into reach of state-of-the-art or near-future quantum simulators of such models. Here we discuss the challenges of an experimental implementation of measurement schemes of two-time correlations in quantum gas microscopes or microtrap arrays. We propose a modified measurement protocol that mitigates these challenges, and we rigorously estimate the accuracy of the protocols by means of Lieb-Robinson bounds. On the basis of these bounds we identify a parameter regime in which the proposed protocols allow for accurate measurements of the desired two-time correlations.Comment: 15 pages, 2 figure

    Master stability functions reveal diffusion-driven pattern formation in networks

    Get PDF
    We study diffusion-driven pattern-formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space.For illustration we consider a generalized model of ecological meta-foodwebs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.Comment: 20 pages, 5 figures, to appear in Phys. Rev. E (2018

    The influence of dispersal on a predator-prey system with two habitats

    Get PDF
    Dispersal between different habitats influences the dynamics and stability of populations considerably. Furthermore, these effects depend on the local interactions of a population with other species. Here, we perform a general and comprehensive study of the simplest possible system that includes dispersal and local interactions, namely a 2-patch 2-species system. We evaluate the impact of dispersal on stability and on the occurrence of bifurcations, including pattern forming bifurcations that lead to spatial heterogeneity, in 19 different classes of models with the help of the generalized modelling approach. We find that dispersal often destabilizes equilibria, but it can stabilize them if it increases population losses. If dispersal is nonrandom, i.e. if emigration or immigration rates depend on population densities, the correlation of stability with migration rates is positive in part of the models. We also find that many systems show all four types of bifurcations and that antisynchronous oscillations occur mostly with nonrandom dispersal

    Large two-level magnetoresistance effect in doped manganite grain boundary junctions

    Full text link
    We performed a systematic analysis of the tunneling magnetoresistance (TMR) effect in single grain boundary junctions formed in epitaxial La(2/3)Ca(1/3)MnO(3) films deposited on SrTiO(3) bicrystals. For magnetic fields H applied parallel to the grain boundary barrier, an ideal two-level resistance switching behavior with sharp transitions is observed with a TMR effect of up to 300% at 4.2 K and still above 100% at 77 K. Varying the angle between H and the grain boundary results in differently shaped resistance vs H curves. The observed behavior is explained within a model of magnetic domain pinning at the grain boundary interface.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (Rapid Comm.

    Transport anisotropy in biaxially strained La(2/3)Ca(1/3)MnO(3) thin films

    Full text link
    Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) substrates, we measured the magnetotransport properties both parallel and perpendicular to the substrate and found an anomaly of the electrical transport properties. Whereas metallic behavior is found within the plane of biaxial strain, for transport perpendicular to this plane an insulating behavior and non-linear current-voltage characteristics (IVCs) are observed. The most natural explanation of this anisotropy is a strain induced transition from an orbitally disordered ferromagnetic state to an orbitally ordered state associated with antiferromagnetic stacking of ferromagnetic manganese oxide planes.Comment: 5 pages, 4 figure

    The resolution property of algebraic surfaces

    Full text link
    We prove that on separated algebraic surfaces every coherent sheaf is a quotient of a locally free sheaf. This class contains many schemes that are neither normal, reduced, quasiprojective or embeddable into toric varieties. Our methods extend to arbitrary 22-dimensional schemes that are proper over a noetherian ring.Comment: 19 page
    corecore