We study diffusion-driven pattern-formation in networks of networks, a class
of multilayer systems, where different layers have the same topology, but
different internal dynamics. Agents are assumed to disperse within a layer by
undergoing random walks, while they can be created or destroyed by reactions
between or within a layer. We show that the stability of homogeneous steady
states can be analyzed with a master stability function approach that reveals a
deep analogy between pattern formation in networks and pattern formation in
continuous space.For illustration we consider a generalized model of ecological
meta-foodwebs. This fairly complex model describes the dispersal of many
different species across a region consisting of a network of individual
habitats while subject to realistic, nonlinear predator-prey interactions. In
this example the method reveals the intricate dependence of the dynamics on the
spatial structure. The ability of the proposed approach to deal with this
fairly complex system highlights it as a promising tool for ecology and other
applications.Comment: 20 pages, 5 figures, to appear in Phys. Rev. E (2018