2,685 research outputs found
Dual Identities inside the Gluon and the Graviton Scattering Amplitudes
Recently, Bern, Carrasco and Johansson conjectured dual identities inside the
gluon tree scattering amplitudes. In this paper, we use the properties of the
heterotic string and open string tree scattering amplitudes to refine and
derive these dual identities. These identities can be carried over to loop
amplitudes using the unitarity method. Furthermore, given the -gluon (as
well as gluon-gluino) tree amplitudes, -graviton (as well as
graviton-gravitino) tree scattering amplitudes can be written down immediately,
avoiding the derivation of Feynman rules and the evaluation of Feynman diagrams
for graviton scattering amplitudes.Comment: 43 pages, 3 figures; typos corrected, a few points clarified
QCD with Chemical Potential in a Small Hyperspherical Box
To leading order in perturbation theory, we solve QCD, defined on a small
three sphere in the large N and Nf limit, at finite chemical potential and map
out the phase diagram in the (mu,T) plane. The action of QCD is complex in the
presence of a non-zero quark chemical potential which results in the sign
problem for lattice simulations. In the large N theory, which at low
temperatures becomes a conventional unitary matrix model with a complex action,
we find that the dominant contribution to the functional integral comes from
complexified gauge field configurations. For this reason the eigenvalues of the
Polyakov line lie off the unit circle on a contour in the complex plane. We
find at low temperatures that as mu passes one of the quark energy levels there
is a third-order Gross-Witten transition from a confined to a deconfined phase
and back again giving rise to a rich phase structure. We compare a range of
physical observables in the large N theory to those calculated numerically in
the theory with N=3. In the latter case there are no genuine phase transitions
in a finite volume but nevertheless the observables are remarkably similar to
the large N theory.Comment: 44 pages, 18 figures, jhep3 format. Small corrections and
clarifications added in v3. Conclusions cleaned up. Published versio
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint
A Rapid Assessment of the Quality of Neonatal Healthcare in Kilimanjaro Region, Northeast Tanzania.
While child mortality is declining in Africa there has been no evidence of a comparable reduction in neonatal mortality. The quality of inpatient neonatal care is likely a contributing factor but data from resource limited settings are few. The objective of this study was to assess the quality of neonatal care in the district hospitals of the Kilimanjaro region of Tanzania. Clinical records were reviewed for ill or premature neonates admitted to 13 inpatient health facilities in the Kilimanjaro region; staffing and equipment levels were also assessed. Among the 82 neonates reviewed, key health information was missing from a substantial proportion of records: on maternal antenatal cards, blood group was recorded for 52 (63.4%) mothers, Rhesus (Rh) factor for 39 (47.6%), VDRL for 59 (71.9%) and HIV status for 77 (93.1%). From neonatal clinical records, heart rate was recorded for3 (3.7%) neonates, respiratory rate in 14, (17.1%) and temperature in 33 (40.2%). None of 13 facilities had a functioning premature unit despite calculated gestational age <36 weeks in 45.6% of evaluated neonates. Intravenous fluids and oxygen were available in 9 out of 13 of facilities, while antibiotics and essential basic equipment were available in more than two thirds. Medication dosing errors were common; under-dosage for ampicillin, gentamicin and cloxacillin was found in 44.0%, 37.9% and 50% of cases, respectively, while over-dosage was found in 20.0%, 24.2% and 19.9%, respectively. Physician or assistant physician staffing levels by the WHO indicator levels (WISN) were generally low. Key aspects of neonatal care were found to be poorly documented or incorrectly implemented in this appraisal of neonatal care in Kilimanjaro. Efforts towards quality assurance and enhanced motivation of staff may improve outcomes for this vulnerable group
Simplifying one-loop amplitudes in superstring theory
We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in
the RNS formalism, around vacuum configurations with open unoriented strings,
preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward
identities, in that they vanish for non MHV configurations (++++) and (-+++).
In the MHV case (--++) we drastically simplify their expressions. We then study
factorisation and the limiting IR and UV behaviour and find some unexpected
results. In particular no massless poles are exposed at generic values of the
modular parameter. Relying on the supersymmetric properties of our bosonic
amplitudes, we extend them to manifestly supersymmetric super-amplitudes and
compare our results with those obtained in the D=4 hybrid formalism, pointing
out difficulties in reconciling the two approaches for contributions from N=1,2
sectors.Comment: 38 pages plus appendice
Searching for plasticity in dissociated cortical cultures on multi-electrode arrays
We attempted to induce functional plasticity in dense cultures of cortical cells using stimulation through extracellular electrodes embedded in the culture dish substrate (multi-electrode arrays, or MEAs). We looked for plasticity expressed in changes in spontaneous burst patterns, and in array-wide response patterns to electrical stimuli, following several induction protocols related to those used in the literature, as well as some novel ones. Experiments were performed with spontaneous culture-wide bursting suppressed by either distributed electrical stimulation or by elevated extracellular magnesium concentrations as well as with spontaneous bursting untreated. Changes concomitant with induction were no larger in magnitude than changes that occurred spontaneously, except in one novel protocol in which spontaneous bursts were quieted using distributed electrical stimulation
Tensor Decomposition Reveals Concurrent Evolutionary Convergences and Divergences and Correlations with Structural Motifs in Ribosomal RNA
Evolutionary relationships among organisms are commonly described by using a
hierarchy derived from comparisons of ribosomal RNA (rRNA) sequences. We propose that
even on the level of a single rRNA molecule, an organism's evolution is composed
of multiple pathways due to concurrent forces that act independently upon different
rRNA degrees of freedom. Relationships among organisms are then compositions of
coexisting pathway-dependent similarities and dissimilarities, which cannot be
described by a single hierarchy. We computationally test this hypothesis in
comparative analyses of 16S and 23S rRNA sequence alignments by using a tensor
decomposition, i.e., a framework for modeling composite data. Each alignment is
encoded in a cuboid, i.e., a third-order tensor, where nucleotides, positions and
organisms, each represent a degree of freedom. A tensor mode-1 higher-order singular
value decomposition (HOSVD) is formulated such that it separates each cuboid into
combinations of patterns of nucleotide frequency variation across organisms and
positions, i.e., “eigenpositions” and corresponding nucleotide-specific
segments of “eigenorganisms,” respectively, independent of a-priori
knowledge of the taxonomic groups or rRNA structures. We find, in support of our
hypothesis that, first, the significant eigenpositions reveal multiple similarities
and dissimilarities among the taxonomic groups. Second, the corresponding
eigenorganisms identify insertions or deletions of nucleotides exclusively conserved
within the corresponding groups, that map out entire substructures and are enriched
in adenosines, unpaired in the rRNA secondary structure, that participate in tertiary
structure interactions. This demonstrates that structural motifs involved in rRNA
folding and function are evolutionary degrees of freedom. Third, two previously
unknown coexisting subgenic relationships between Microsporidia and Archaea are
revealed in both the 16S and 23S rRNA alignments, a convergence and a divergence,
conferred by insertions and deletions of these motifs, which cannot be described by a
single hierarchy. This shows that mode-1 HOSVD modeling of rRNA alignments might be
used to computationally predict evolutionary mechanisms
Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection
Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death
On-shell Recursion in String Theory
We prove that all open string theory disc amplitudes in a flat background
obey Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations, up to a
possible reality condition on a kinematic invariant. Arguments that the same
holds for tree level closed string amplitudes are given as well. Non-adjacent
BCFW-shifts are related to adjacent shifts through monodromy relations for
which we provide a novel CFT based derivation. All possible recursion relations
are related by old-fashioned string duality. The field theory limit of the
analysis for amplitudes involving gluons is explicitly shown to be smooth for
both the bosonic string as well as the superstring. In addition to a proof a
less rigorous but more powerful argument based on the underlying CFT is
presented which suggests that the technique may extend to a much more general
setting in string theory. This is illustrated by a discussion of the open
string in a constant B-field background and the closed string on the level of
the sphere.Comment: 36 + 9 pages text, one figure, v3: added discussion on relation to
old-fashioned factorization, typos corrected, published versio
Lunar exploration: opening a window into the history and evolution of the inner Solar System
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date, and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system, and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap
- …