1,096 research outputs found

    Robustness Verification for Classifier Ensembles

    Full text link
    We give a formal verification procedure that decides whether a classifier ensemble is robust against arbitrary randomized attacks. Such attacks consist of a set of deterministic attacks and a distribution over this set. The robustness-checking problem consists of assessing, given a set of classifiers and a labelled data set, whether there exists a randomized attack that induces a certain expected loss against all classifiers. We show the NP-hardness of the problem and provide an upper bound on the number of attacks that is sufficient to form an optimal randomized attack. These results provide an effective way to reason about the robustness of a classifier ensemble. We provide SMT and MILP encodings to compute optimal randomized attacks or prove that there is no attack inducing a certain expected loss. In the latter case, the classifier ensemble is provably robust. Our prototype implementation verifies multiple neural-network ensembles trained for image-classification tasks. The experimental results using the MILP encoding are promising both in terms of scalability and the general applicability of our verification procedure

    Interactive 3D video editing

    Get PDF
    We present a generic and versatile framework for interactive editing of 3D video footage. Our framework combines the advantages of conventional 2D video editing with the power of more advanced, depth-enhanced 3D video streams. Our editor takes 3D video as input and writes both 2D or 3D video formats as output. Its underlying core data structure is a novel 4D spatio-temporal representation which we call the video hypervolume. Conceptually, the processing loop comprises three fundamental operators: slicing, selection, and editing. The slicing operator allows users to visualize arbitrary hyperslices from the 4D data set. The selection operator labels subsets of the footage for spatio-temporal editing. This operator includes a 4D graph-cut based algorithm for object selection. The actual editing operators include cut & paste, affine transformations, and compositing with other media, such as images and 2D video. For high-quality rendering, we employ EWA splatting with view-dependent texturing and boundary matting. We demonstrate the applicability of our methods to post-production of 3D vide

    Photoelectron spectra of anionic sodium clusters from time-dependent density-functional theory in real-time

    Full text link
    We calculate the excitation energies of small neutral sodium clusters in the framework of time-dependent density-functional theory. In the presented calculations, we extract these energies from the power spectra of the dipole and quadrupole signals that result from a real-time and real-space propagation. For comparison with measured photoelectron spectra, we use the ionic configurations of the corresponding single-charged anions. Our calculations clearly improve on earlier results for photoelectron spectra obtained from static Kohn-Sham eigenvalues
    corecore