
Visual Comput (2006) 22: 631–641
DOI 10.1007/s00371-006-0053-z O R I G I N A L A R T I C L E

Michael Waschbüsch
Stephan Würmlin
Markus Gross

Interactive 3D video editing

Published online: 15 August 2006
© Springer-Verlag 2006

M. Waschbüsch (�) · S. Würmlin ·
M. Gross
Computer Graphics Laboratory, ETH
Zürich, Switzerland
{waschbuesch, wuermlin,
grossm}@inf.ethz.ch

Abstract We present a generic and
versatile framework for interactive
editing of 3D video footage. Our
framework combines the advantages
of conventional 2D video editing
with the power of more advanced,
depth-enhanced 3D video streams.
Our editor takes 3D video as input
and writes both 2D or 3D video
formats as output. Its underlying
core data structure is a novel 4D
spatio-temporal representation which
we call the video hypervolume.
Conceptually, the processing loop
comprises three fundamental opera-
tors: slicing, selection, and editing.
The slicing operator allows users
to visualize arbitrary hyperslices
from the 4D data set. The selection
operator labels subsets of the footage
for spatio-temporal editing. This
operator includes a 4D graph-cut
based algorithm for object selection.

The actual editing operators include
cut & paste, affine transformations,
and compositing with other media,
such as images and 2D video. For
high-quality rendering, we employ
EWA splatting with view-dependent
texturing and boundary matting. We
demonstrate the applicability of our
methods to post-production of 3D
video.

Keywords 3D video · Video editing ·
Video processing · Point-based
graphics · Graph cuts

1 Introduction

In recent years, significant progress has been made in
the acquisition of dynamic three-dimensional objects and
scenes. Besides numerous prototype systems for depth
image scanning, commercial sensors, such as 3DV Sys-
tems’ ZCamTM(http://www.3dvsystems.com), have be-
come available and provide solutions for studio setups.
The major application of such systems is to facilitate
foreground–background separation and other operations
for post-production of conventional 2D video footage.
While this technology still offers room for improvement,

we can expect reliable, depth-enhanced video acquisition
in the years to come. At the same time, three-dimensional
and view-independent video has emerged as a novel me-
dia technology enabling a variety of 3D special effects.
In most cases, multi-view video streams are combined
into a spatio-temporal representation which can be re-
rendered using view interpolation. It has turned out that
adding geometry greatly helps to achieve production qual-
ity when interpolating between views of sparsely sampled
cameras. Some approaches compute depth implicitly from
the 2D video data [30] using vision algorithms, whereas
others [28] explicitly assume geometry or adapt template
geometry [5]. In spite of the aforementioned activities,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159151737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

632 M. Waschbüsch et al.

however, relatively little research effort has been devoted
to the problem of efficient and intuitive editing of three-
dimensional video.

In this paper, we present a generic framework for inter-
active editing of 3D video footage. It extends on existing
concepts for two-dimensional video and combines their
conceptual simplicity with the power of depth-enhanced
video data. The multi-dimensional, spatio-temporal nature
of 3D video leaves its editing highly non-trivial, but, at
the same time, allows for a variety of novel features. Our
framework is based on explicit 3D geometry and assumes
its availability through some 3D acquisition system. Its de-
sign involves various novel features and methods leading
to the following main contributions: First, we developed
a novel 4D spatio-temporal representation – the so-called
video hypervolume – for intuitive handling and editing of
the four-dimensional data. The video hypervolume irregu-
larly samples the four-dimensional space-time domain to
represent dynamic 3D scenes. Second, we designed a con-
cept for video editing which is based on three fundamental
operators: slicing, selection, and editing. In particular, we
present a 4D object selection algorithm based on graph-
cuts. To convey object boundaries the user indicates object
and non-object regions in the spatio-temporal domain by
painting on the surfaces with a 3D paintbrush. In addition,
we provide a set of spatio-temporal editing operations,
such as cut & paste and affine transformations. By using
the operators the processing of 3D video becomes easy
and intuitive.

1.1 Related work

3D video. Over the last years, three-dimensional video
emerged as a novel media technology for re-rendering of
multi-view video data. It can be seen as a natural exten-
sion of 2D video to the spatio-temporal domain. On the
one hand, 2.5 D representations as used in the image-
based visual hulls approach (IBVH) [11] extend video
imagery with view-dependent depth of the acquired sur-
faces as obtained by computer vision methods. While the
IBVH employs shape-from-silhouettes methods, Zitnick
et al. [30] use depth-from-stereo algorithms for this pur-
pose. The latter renders novel imagery using view inter-
polation. Simple editing tasks can be performed, such as
cloning and time-shifting of objects. However, due to its
view-dependent nature complex editing tasks are not eas-
ily possible. On the other hand, there exist systems with
explicit 3D geometry, such as triangular meshes [5, 17]
or 3D point samples [24, 28, 29], featuring non-uniform,
view-independent handling of captured objects or scenes.
However, none of these approaches tackled the challenge
of designing an editing system for 3D video. One common
editing task for seamless cut & paste of objects into new
environments would be relighting. However, as shown by
Theobalt et al. [21] extracting reflectance properties from
time-varying multi-view video data is a challenging task

and no solution for high-quality re-rendering has been pro-
posed so far.

Image and video editing. Our work is inspired by 2D
video editing where a variety of visual effects produc-
tion tools exist to support typical 2D video editing
tasks. But this process is often tedious, time-consuming
and sometimes only possible by introducing constraints
on the scene. For instance, extracting foreground ob-
jects from the background is only possible for objects
recorded in front of a special-coated background. How-
ever, without the use of dedicated backgrounds, i.e., in
natural environments, real-time keying becomes much
more difficult. Yet, recent research targets video cutout
with arbitrary backgrounds using manual interaction and
graph-cut techniques [9, 23] by extending image cutout
methods [10, 18]. Our 3D video selection framework is in-
spired by these approaches. The video cube [7, 8] – also
employed by Wang et al. for their video object cutout
– is based on the concept of displaying video data as
a three-dimensional volume where arbitrary slices through
the volume generate spatio-temporal visualizations. While
similar to our video hypervolume representation the ad-
ditional dimension and irregularity of 3D video data in-
troduces some more challenges. Proscenium [2] is a video
editing framework which uses and extends the video cube
representation by distortion and warping operators.

Geometry information can also be used to facili-
tate conventional 2D video editing. Snavely et al. [20]
utilize depth maps to stylize movies with various non-
photorealistic rendering techniques.

1.2 Overview

Our system complements the 3D video acquisition and re-
construction pipeline with an editing framework for post-
production as illustrated in Fig. 1. It is based on a novel
four-dimensional data model which represents appearance

Fig. 1. The 3D video editing framework

Interactive 3D video editing 633

Fig. 2. Our interactive 3D video editing combines the advantages of 2D video editing with depth-enhanced 3D video streams. From left
to right: Interpolated view of the 3D video input data; hyperslicing to reveal the time domain where selection and editing is intuitive
and easily performed; cutout of a 3D video object; composite 3D video with additional 2D and 3D objects, new background and shadow
mapping

and geometry of the scene as point-samples in spacetime.
We call this representation a video hypervolume (Sect. 2).
Some implementation issues are discussed in Sect. 6.

The editing framework is based on three opera-
tors: slicing, selection and editing. The slicing operator
(Sect. 3) provides an intuitive interface to interact with the
four-dimensional domain. It transforms selected parts of
the 4D data set from the video hypervolume to a cloud
of 3D point samples. The slice orientation and position
can be changed interactively. With the selection operator
(Sect. 4) the user can mark regions or objects of interest.
While the former can be performed using marquee, lasso
or paintbrush tools, the latter requires the notion of object
boundaries which we introduce using a graph-cut selec-
tion scheme. Users guide the selection process by painting
with an object brush and with a background brush. If the
object is disconnected from other scene parts, object seg-
mentation is often very easy due to the underlying 3D
geometry – unlike in 2D video editing. All selected parts
can be modified by a set of editing operators (Sect. 5).
Operations make use of the explicitly modeled scene
geometry and include cut & paste, spatial and temporal
translations, rotations and scaling. During compositing
handling of occlusions is provided for free. Our unified
handling of space and time naturally supports editing op-
erations exploiting both spatial and temporal coherence.
Selection and editing are applied directly on a cloud of 3D
point samples which can be rotated interactively using an
arcball interface. The invisible, fourth domain can only be
accessed by defining a different slice. Upon completion of
an editing operation the data in the current slice is back-
propagated into the video hypervolume. By operating on
the slice only, we leverage interactive editing of the huge
3D video data sets. A typical editing session is illustrated
in Fig. 2.

2 Video hypervolume

Interactive editing of 3D video footage requires a primi-
tive and a data representation that allows for unified hand-

ling of space and time. We choose to build our edit-
ing framework on irregular point samples in the four-
dimensional spacetime domain. Each point sample rep-
resents a point on a scene surface with a positional co-
ordinate (x, y, z) and a time coordinate t. The point sam-
ple has some nice properties for representing 3D video
data samples. Primarily, it does not need explicit topology
and, hence, no connectivity information has to be con-
structed and maintained over time. Secondly, it encodes
explicit 3D scene geometry and color in a homogeneous
way. Furthermore it can be flexibly extended to contain
more application-specific data like more sophisticated ma-
terial properties or object labels. Inspired by research on
visualization of time-varying volumetric data [1, 13], we
introduce the video hypervolume as representation of the
point-sampled data. Thereby, space and time are consid-
ered as compound entities and facilitate the design of
a user interface to conveniently support editing operations,
similar to video cubes for 2D video [7, 8]. By applying
hyperslicing and projection methods (see Sect. 3), we can
exploit both spatial and temporal coherence during edit-
ing. Figure 3 illustrates the video hypervolume.

Fig. 3. The video hypervolume

634 M. Waschbüsch et al.

The point-sampled video hypervolume fits nicely into
existing frameworks for processing of point-sampled
geometry [31]. This enables to utilize a variety of post-
processing operations for outlier removal [25], redun-
dancy elimination [19], and geometry smoothing [14].
Many of these algorithms are independent of the number
of dimensions and, thus, can naturally be extended to inte-
grate time coherence. For instance, we reduce redundancy
in the supplied 3D video data using a point clustering al-
gorithm [15].

Data model. The video hypervolume can be constructed
independently from the 3D video acquisition system,
using e.g. depth and color images as an input. It does
not impose any constraints on the setup of the acquisition
cameras as long as occlusions can be resolved. Each point
sample in the video hypervolume carries a set of attributes
describing local surface properties like position, orienta-
tion and color. Identification of a specific sample is done
via its position attribute p = (x, y, z, t)T which is a vector
in Euclidean spacetimeR4. In the spatial domain, the sam-
ples are irregularly placed on the surfaces, whereas in time
we usually deal with regular sampling resulting from dis-
tinct video frames of the acquisition system. In terms of
storage efficiency, the hypervolume has some advantages
over a dense regular grid due to the sampling irregular-
ity and the level of sparsity of 3D video data. Designing
in-core and out-of-core compression schemes is left for
future work.

The point samples in the video hypervolume can be
easily constructed by back-projecting the image pixels
from the acquisition cameras using the corresponding
depth information. To generate hole-free renderings as
output, each projection of a point onto the screen has
to cover a certain area of pixels. The traditional method
for static point clouds is to use surfels [16], which are
small 2D ellipses tangentially aligned to the surface. In
our data model, surfels would provide a full surface cov-
erage in the spatial domain only. To also cover the time
domain, we generalize them to 4D hypersurfels represent-
ing small ellipsoidal hypervolumes in R4. A hypersurfel
is constructed from four orthogonal vectors t1, . . . , t4,
ti = (tx i, tyi, tzi, tt i)

T spanning a 4D Gaussian ellipsoid
with covariance matrix V = (t1, . . . , tn) · (t1, . . . , tn)T .
The first three vectors describe a conventional surfel, i.e.,
a 2D Gaussian ellipse embedded in the 3D spatial domain.
Hence, t1 and t2 are tangentially aligned to the surface
with tx 1 = tx2 = 0, and t3 is set to zero. The time domain
is covered by t4 = (0, 0, 0, ∆t)T , where ∆t denotes the
temporal sampling density which corresponds to the frame
rate of the video.

The tangent vectors t1 and t2 may be obtained by any
of the available point-based algorithms, e.g., [31]. Alter-
natively, if the acquisition system is able to provide stable
depth gradients, they can be computed by back-projecting
the footprint of an image pixel to three-space. Based on

the projection x = C−1 ·d · (u, v, 1)T + c of a pixel with
coordinates (u, v) and depth d to a 3D point x via a camera
with projection matrix C and center c, the tangent vectors
can be computed by differentiation as

(tx1, ty1, tz1) = C−1 · (d · (1, 0, 0)T +du · (u +1, v, 1)T),
(1)

(tx2, ty2, tz2) = C−1 · (d · (0, 1, 0)T +dv · (u, v+1, 1)T),
(2)

where du and dv are the directional derivatives of the depth
map.

3 Slicing

To be able to view data from the video hypervolume we
have to generate different views on the data set by pro-
jecting its four-dimensional data into 2D screen space.
This process is called slicing. Apart from the standard
projection showing a 3D video frame at a single time
instant, arbitrary projections can be used to visualize
and edit the underlying data. Slicing is performed using
a two-stage projection. First, in a process called hyperslic-
ing [27], a subset of the 4D point samples is projected
to 3D. The resulting 3D point cloud is then displayed
using conventional point rendering methods, see Sect. 6.
Note that the actual projection operations are only car-
ried out in the rendering process. Editing tools all oper-
ate on the original 4D points of the current hyperslice
in order not to lose information. Our editing system al-
lows one to perform hyperslicing arbitrarily, providing the
user with views of both spatial and temporal scene in-
formation. This facilitates the application of editing op-
erations in space and time. In the following, we first
describe mathematical details of hyperslicing and then
present the user interface for navigating in the video hy-
pervolume.

3.1 Hyperslicing

Hyperslicing extracts a three-dimensional subspace from
the 4D volume by intersection with a hyperplane. It selects
all points p ∈R4 fulfilling the plane equation n · p−d = 0,
where n ∈ R4 is the normal of the plane and d its distance
from the origin. To comply with the sparse, irregular sam-
pling of our video hypervolume, we extend this procedure
as depicted in Fig. 4 and select all points within a specific
distance ∆d from the plane by solving

|n · p−d| ≤ ∆d. (3)

Three-dimensional positions p′ = Pt · R · p are ob-
tained by a rotation R of p into a coordinate system locally

Interactive 3D video editing 635

Fig. 4. Samples of the video hypervolume (orange) are intersected
with the hyperslice (blue) and projected onto its center plane

aligned at the hyperplane followed by a parallel projec-
tion Pt along the t-axis. The local coordinate system is
spanned by four orthonormal column vectors t1, . . . , t4
with t1 = n, yielding R = (t1, t2, t3, t4)T . For 2D render-
ing of the projected 3D point samples using EWA volume
splatting (see Sect. 6), the covariance matrices have to
be projected accordingly by computing V ′ = P · V · PT

which results in descriptions of three-dimensional Gaus-
sian ellipsoids.

3.2 User interface

The slicing operator is used to navigate in the video hyper-
volume. In the most common case, the slice is orthogonal
to the t axis and corresponds to a single 3D video frame.
Orientation of the 3D point cloud can be controlled in-
teractively using an arcball interface. The user can select
a specific frame using a slider to control the slice position
d in time. Moreover, he can adjust its thickness ∆d by
defining in and out points – quite similar to 2D video pro-
cessing – resulting in multiple frames getting displayed.
This easily allows one to identify static and dynamic scene
parts.

For spatio-temporal editing it is also interesting to vi-
sualize the time domain on the screen. This facilitates
intuitive spatio-temporal selection as described in the next
section. The user can define arbitrarily oriented slices by
drawing a line on the screen representing the hyperplane.
This conveniently allows one to generate slices through
a specific object of interest, as can be seen in Fig. 2b.
The slider now generally controls the movement of the
slice through the video hypervolume. The slice thickness
can be increased such that a greater part of the orth-
ogonal, fourth dimension gets projected onto the screen.
When the user defines the new slice, the system auto-
matically computes its rotation matrix R by determining
its local coordinate system according to the drawn line
and the current view. Figure 5 shows the vectors t1, t2
and t3 which are all constructed within the current hy-
perslice. t1 and t3 are located in the current image plane,
t1 is orthogonal to the drawn line and defines the normal
of the new slice. t2 is orthogonal to the image plane. t4

Fig. 5. Non-orthogonal slices are generated by calculating the re-
quired rotation matrix simply from a line drawn onto the screen

is not depicted as it is orthogonal to the current hyper-
slice.

4 Selection

The selection operator is the key to subsequent 3D video
editing tasks. The 4D data does not feature object la-
bels indicating conceptually connected data samples. For
this purpose, our framework provides a graph-cut-based
algorithm to associate such labels for further editing
operations. But first we introduce some basic selection
tools.

4.1 Selection tools

The user can view and select objects both in space and
along trajectories in time using the slicing operator. By
taking advantage of the underlying 3D geometry, one can
often already accurately select objects and regions of in-
terest, using basic selection tools.

Marquee and lasso selection tools. Similar to 2D photo
editing applications our framework provides marquee and
lasso selection tools. With these tools users are intu-
itively able to select large areas of the visualized slice.
Users draw 2D regions on the screen which get ex-
truded into the slice domain for 3D selection using the
current virtual camera parameters. In this way a whole
subvolume and possibly hidden surfaces are selected.
However, by rotating the viewed data the user easily
sees where hidden surfaces are selected and can work
on the selection using different selection modes. Our
framework provides addition, difference and intersection
modes.

3D paintbrush. Another selection tool is the paintbrush
also known from 2D photo and video editing applica-
tions to paint selections or colors. However, due to the
additional dimension we have to define a 3D footprint of
the paintbrush. Intuitively we define the 3D paintbrush

636 M. Waschbüsch et al.

as a spherical volume in 3D. We determine the 3D cen-
ter point by calculating the 3D position of the front sur-
face data sample at the 2D screen-space coordinate of the
mouse pointer. 3D data points are selected if they are con-
tained in the spherical volume around the center point and
are determined using a range query in the underlying kd-
tree structure (see Sect. 6). We calculate the 3D center
point with help of the z-buffer. By considering z-values
of all pixels within the screen-space footprint of the pro-
jected spherical volume the intersection point of the pick-
ing ray with the scene can be determined very robustly.
The user can chose the depth of the sphere as either de-
termined by the nearest z-value or by a median filter over
all z-values. The former can be used for selecting small
surface patches in front of a bigger surface without the
need to exactly click on them. The latter can be employed
for selecting the densest surface without considering small
surface patches.

4.2 Object selection

The captured 4D data set does not supply the user with
object boundaries or labels. However, for complex edit-
ing tasks such a labeling is essential. Therefore, we in-
troduce a graph-cut-based algorithm to associate such la-
bels. We use the 3D paintbrush and the marquee selec-
tion tools introduced in the previous section to specify
the necessary constraints. With the paintbrush, the user
can mark surface patches which should be selected (red
paint) and patches which should not be selected (blue
paint). The marquee selection tools (green paint) are used
to define a spatio-temporal region of interest, thereby ex-
cluding large uninteresting regions and speeding up the
min-cut optimization significantly. Performing the opti-
mization on whole 3D video data streams is not feasible
interactively.

The status of all data samples marked with green paint
is then determined by invoking a min-cut optimization
after hitting a button in the interface. Upon completion, the
user can refine his markings using the selection tools and

Fig. 6. Object selection. Left: The user wants to select a person and
marks her with red paint, the floor with blue paint and the region
of interest with a rectangular marquee selection. Middle: The first
invocation of the min-cut optimization wrongly marked samples on
the wall behind the person. Right: After specifying more paintbrush
strokes, the optimization completes with a satisfying selection

Fig. 7. When constructing the 4D graph, any data sample or data
region contributes to the graph according to intra-frame and inter-
frame neighborhoods and energies, as well as to virtual nodes with
data energies

run the optimization again. Figure 6 illustrates the object
selection operator.

4.3 Graph construction

The object selection problem can be interpreted as a graph
labeling problem. Each data sample is assigned a unique
label x ∈ {1(S), 0(N)} where 1 means the data sample be-
longs to the selection (S) and 0 that it does not belong to
the selection (N). We construct a 4D graph G = 〈V, A〉
on the 4D hypervolume bounded by the region of inter-
est. The node set V are all data samples which have been
defined as the spatio-temporal region of interest. A node
u represents a data sample pi with label xi , color ci , sur-
face normal ni , as well as possibly a user assigned label γi .
Unassigned nodes are tagged as ∅. The position of the
data sample is not considered in the graph directly. How-
ever, we require the positional information to generate
the graph arcs. Furthermore, we define St as the scene at
a time instant t. Figure 7 illustrates the 4D graph construc-
tion.

We construct the intra-frame arcs AI by connecting
spatially adjacent data samples in the same time instant
St. The data samples are irregularly sampled in space-
time and do not feature connectivity. Hence, we have to
calculate the spatially adjacent samples by using range
queries – quite contrary to similar approaches in 2D video
cutout [9] which have explicit neighborhoods on the pixel
grid. We apply a 3D Kd-tree (see Sect. 6) for this pur-
pose and generate arcs for all data samples which lie in-
side a sphere with given radius (orange sphere in Fig. 7),
typically 0.02 m in our metric environment. We take the
nearest k data samples and exclude evidently unrelated
samples with mean color or normal differences over a cer-
tain threshold (usually 0.1).

Interactive 3D video editing 637

Inter-frame arcs AT connect temporally and spatially
adjacent point samples in adjacent time instants St±1 that
are located within a given 3D radius, typically 0.04 m. We
also use a Kd-tree for this purpose, created in the corres-
ponding time instants t ±1. We initialize the range query
by projecting the data sample (orange point in Fig. 7) from
time t to t ±1 (yellow points in Fig. 7). Note that the ra-
dius has to be higher than for the intra-frame arcs due to
non-regular sampling and motion. Furthermore, we only
take the k/2 nearest data samples and exclude unrelated
data samples too. In our current implementation we set k
to 8.

4.4 4D graph-cut optimization

Similar to work on 2D video cutout [9, 23] we define a cost
function E on the constructed graph G. The 4D graph-cut
algorithm then solves the object labeling problem by min-
imizing the following energy:

E(P, Γ) =
∑

u∈V

ED(pi, γi)+λI

∑

(u,v)∈AI

EI (pi, pj)

+λT

∑

(u,v)∈AT

ET (pi, pj) (4)

The optimization assigns labels xi for each data sample pi
in node i . P denotes the solution to this problem with user
assigned labels Γ . Figure 7 illustrates the different terms
of the energy function. ED is the likelihood energy while
EI and ET are the prior energies. ED measures the accor-
dance of the color of a data sample to the color models
assembled from the user-assigned labels. EI and ET as-
sess the color and geometry differences between spatially
and temporally adjacent samples. They penalize strong
color and normal deviations and ensure spatial and tem-
poral coherence in the selection process. We employ the
max-flow algorithm from [3] to minimize the energy E(P)
in Eq. 4.

Likelihood energy ED. We assemble two Gaussian mix-
ture models (GMM) by sampling the color ci of the data
samples with user-assigned labels [18]. One GMM is built
for the “selected” samples γi = S and one for the sam-
ples γi = N marked as not to be selected. The likelihood
energy can then be defined as:

γi = S γi = N γi = ∅
ED(pi = S) 0 ∞ DS

DS+DN

ED(pi = N) ∞ 0 DN
DN+DN

The energies in the first two columns ensure that the user-
assigned labels are not violated with the optimization pro-
cedure. Since most nodes have no label (γi = ∅), we have

to calculate data costs for these nodes DS and DN . As
in [18] they are normalized for determining the final en-
ergy (third column). To check whether the data samples
belong to the selected or unselected region we determine
the negative log-likelihood DS and DN using the GMMs:

DS|N(pi = S | N)

= − log
K∑

k=1

wk,S|Ne− 1
2 (ci−µk,S|N)T Σ−1

k,S|N (ci−µk,S|N) (5)

µk and
∑

k are the mean color and covariance of the k-th
component of the GMM and wk are the weights and con-
sider the number of samples closest to the k-th component
of the GMM. We use K = 5 Gaussians which provides
satisfying results in our editing framework.

Prior energies EI and ET . We adopt the global link costs
from [23] and extend them by geometry information. Be-
sides considering color differences we weight the normal
differences between adjacent data samples in a similar
way. The intra-frame and inter-frame energies EI can then
be defined in a similar way:

EI |T = e(−∇2
c /(2η2

c,I |T)) + e(−∇2
n/(2η2

n,I |T)) (6)

The gradient ∇ defines the color or normal difference be-
tween two nodes u and v which the link connects. The
η’s represent the intra-frame and inter-frame variance of
the color or normal gradients. In our current implementa-
tion we do not calculate the variances but empirically set
ηc = 0.08 and ηn = 0.12.

5 Editing

Editing operations are leveraged using the slicing and se-
lection operators described in the previous sections. Our
supported set of editing operations is simple yet becomes
very powerful in our framework and with the underlying
4D representation.

Cut & paste. After slicing and selection, the user can em-
ploy a clipboard to perform cut or copy operators for se-
lected regions or objects. The data in the clipboard can
then be used to paste objects to other hyperslices, other
scenes or to clone objects. Compositing of multiple scenes
can be done conveniently by first loading all the scenes
together at different places in the video hypervolume and
then moving their objects around. Objects can be easily re-
moved without leaving holes in the background scene if
the acquisition system was able to capture the background
behind the object from a suitable viewing angle. Note that
compositing in the spatial domain becomes very conve-
nient because our representation explicitly stores the scene
geometry.

638 M. Waschbüsch et al.

Transformations. We can apply arbitrary affine trans-
formations to the selection. Transformations are straight-
forward and intuitive in the case of a hyperslice orthogonal
to the t axis. On the other hand, by using other hyperslices
we conveniently perform translations in time. To this end,
the user simply generates a hyperslice non-orthogonal to
the time axis. The translation operator nicely shows the
possibilities of a uniform spacetime representation. Other
transformation operators include rotation and scaling. The
user can rotate objects freely in spacetime, even from
the temporal into the spatial domain, creating interesting
novel effects like visualization of movement trajectories.
Note that in all cases, occlusions are correctly resolved for
free by our explicit 3D geometry.

Compositing and shadow mapping. We provide various
compositing operators with other media, e.g. images,
videos, and virtual objects. They can be inserted into the
video hypervolume by conversion to point samples. Alter-
natively, we allow for insertion of textured meshes during
the final rendering phase. To seamlessly blend objects with
new backgrounds we adopted a shadow mapping tech-
nique [26] to cast shadows of inserted objects into the
new background. Again, this is leveraged by the underly-
ing explicit 3D geometry. More realistic compositing can
be achieved by adapting the scene’s illumination condi-
tions. However, for this purpose time-varying reflectance
properties of the scene need to be calculated. This is an
interesting challenge for future work.

6 Implementation details

Data structures. Interactive visualization and editing of
the video hypervolume requires data structures providing
efficient access to the samples. We implemented a two-
level approach that relates to the general structure of our
editing framework. The first level of the data structure rep-
resents the entire four-dimensional video volume. As typ-
ical access patterns do not select single points but whole
sub-volumes, a regular grid has proven to be very efficient,
stored as a spatial hash map for efficient access. More-
over, the grid can be updated very quickly if the user adds,
removes or transforms points during the editing session.
In our current implementation, the whole video volume
still has to fit into the computer’s main memory, but this
structure is easily extendible to out-of-core data structures
that dynamically load the desired grid cells into memory
using efficient cashing strategies [12]. The editing itself
only takes place in the 3D projection of a selected hyper-
slice. For efficient rendering, the 3D points are stored as
vertex arrays in main memory. Editing operations typic-
ally need fast access to single points. Kd-trees are very
efficient and widely used for that purpose in traditional
point processing frameworks [31]. In our implementation,

we build and update a Kd-tree on the fly as soon as a query
for a specific point is performed. The Kd-tree can be rep-
resented just as a reordering of the vertex arrays. Thus, no
additional storage is needed.

Rendering. Slices of the video hypervolume are rendered
using EWA splatting [31]. To generate smooth transi-
tions between foreground and background pixels we use
a boundary matting technique similar to [30]. It applies an
alpha ramp at the boundaries of all objects – edited and
non-edited – and renders those splats semi-transparent.
Additionally we dynamically compute view-dependent
textures like in [4] by back-projecting the images of the
color-camera onto the geometry and applying unstruc-
tured lumigraph rendering. To achieve correct projection
for objects rotated during editing, all changes in orien-
tation are tracked by a transformation attribute for each
object.

7 Results and discussion

Our input 3D video footage was generated using a system
similar to the one of [24]. It consists of several 3D acqui-
sition bricks that synchronously capture texture and depth
maps from their respective viewpoints. For each brick
depth information is acquired using a calibrated stereo pair
of gray-scale cameras. The stereo matching algorithm is
assisted by projectors illuminating the scene with struc-
tured light patterns. Instead of alternating the projection
with a pattern and its inverse as proposed in the original
work, we alternate between a pattern and a black frame to
get homogeneously illuminated textures. Four bricks were
used to capture a 3×3m2 scene with a convex horizontal
viewing range of about 90◦ (see Fig. 8). We recorded
a number of 3D videos and performed editing tasks on the
4D data. The input consists of sequences with a flamenco
dancer, an actor juggling a ball and a shot with a plant,
a sofa and a sitting person. They were captured at 12 fps
and their length was between 80 and 150 frames. Figure 9
displays an example of a reconstructed depth map. The
accompanying video shows an interactive editing session
and a post-produced 3D video. The latter took approxi-
mately one day of editing to complete. For this purpose,
our editing system allows for content and viewpoint trajec-
tory scripting.

Figure 10 shows a scene with the flamenco dancer. The
dancer was cut out of the original background and in-
serted into a new one. We used the object selection oper-
ator for this purpose. The sequence shows the generation
of a “clone” in the same scene and subsequent scaling and
transformation to the sofa. Shadow mapping and matting
ensures that the dancer still blends in with the new back-
ground. Note the shadow in the third image which nicely
shows the underlying geometry with the cast shadow of

Interactive 3D video editing 639

Fig. 8. Our 3D video studio consisting of four acquisition bricks. Structured light patterns illuminate the scene to support the 3D
reconstruction

Fig. 9. Example of an acquired color image (left) with correspond-
ing reconstructed depth map (right)

Fig. 10. The Flamenco dancer is inserted into a new environment and cloned. Shadow mapping is applied to seamlessly blend into the
scene

Fig. 11. The juggling actor is placed into a new environment. The ball can be replaced by a virtual object following the same trajectory

the small dancer onto the sofa. The poster is also inserted
onto the wall using the media import feature of our editor.
Figure 11 shows an edited 3D video of the juggle sequence
cut & paste into the environment with the sofa and the per-
son. The plant shows the limitation of the employed 3D
capturing system. Thin structures cannot be handled and
the resulting geometry is not captured well. Nevertheless,
unstructured lumigraph rendering and matting reduce the
resulting artifacts. In this sequence we also replaced the
ball with a teapot. The trajectory was captured by cutting
out the ball and calculating its center of gravity. We gener-
ated spin artificially since we could not capture this from
the video footage. Figure 12 combines most of the edit-
ing operators in one shot. On the wall we placed a video
trailer and applied the Pacific Graphics 2006 logo onto
the other wall. Compositing between artificial and real ob-
jects is handled very nicely with the boundary matting
approach. Some artifacts still remain on the boundaries of

640 M. Waschbüsch et al.

Fig. 12. The Pacific Graphics 2006 logo and a video trailer are placed onto the walls

objects due to limitations of the acquisition system. The
employed stereo matching method has difficulties in ac-
curately reconstructing depth discontinuities. We plan to
improve this in the future by applying spatio-temporal seg-
mentation and matting algorithms on the acquired color
and depth images.

8 Conclusion

We have demonstrated a system for interactive editing of
3D video footage. It is based on a 4D spatio-temporal
representation which allows for unified handling of space
and time. Using a three-staged processing loop, we sup-
port various editing tasks for post-production of 3D video.
For future work we would like to improve our representa-
tion by explicitly modeling time coherence [22]. A prac-
tical limitation of our current implementation is the large
amount of data. We plan to integrate both in-core as well

as out-of-core data structures to handle longer 3D video
sequences. Furthermore, to speed up the graph-cut ob-
ject selection, mean-shift pre-segmentation could be em-
ployed. Although the presented editing operators allow
for the most common editing tasks, others can be envi-
sioned, e.g., altering the motion of actors or re-targeting
of motion from one actor to another [6]. In addition, il-
lumination adaptation needs to be solved for applica-
tion in productive environments. Finally, our system is
only as good as the employed 3D video capturing sys-
tem. We hope that the years to come will provide us
with high-quality, commercial depth video scanning sys-
tems.

Acknowledgement We would like to thank Vanessa Stadler for
her Flamenco performance, Rolf Adelsberger, Patrick Jenni, and
Doo Young Kwon for helping with the acquisition, and Christoph
Niederberger for directing the video. This work is carried out in the
context of the blue-c-II project, funded by ETH grant No. 0-21020-
04 as an internal poly-project.

References
1. Bajaj, C.L., Pascucci, V., Rabbiolo, G.,

Schikorc, D.: Hypervolume visualization:
a challenge in simplicity. In: Proc.
IEEE/ACM Symposium on Volume
Visualization 1998, pp. 95–102 (1998)

2. Bennett, E.P., McMillan, L.: Proscenium:
a framework for spatio-temporal video
editing. In: Proc. ACM Multimedia 2003,
pp. 177–184 (2003)

3. Boykov, Y., Kolmogorov, V.: An
experimental comparison of
min-cut/max-flow algorithms for energy
minimization in vision. IEEE Transactions
on Pattern Analysis and Machine
Intelligence 26(9), 1124–1137 (2004)

4. Buehler, C., Bosse, M., McMillan, L.,
Gortler, S., Cohen, M.: Unstructured
lumigraph rendering. In: Proc. ACM
SIGGRAPH 2001, pp. 425–432 (2001)

5. Carranza, J., Theobalt, C., Magnor, M.A.,
Seidel, H.P.: Free-viewpoint video of
human actors. ACM Transactions on
Graphics 22(3), 569–577 (2003)

6. Cheung, G., Baker, S., Hodgins, J.,
Kanade, T.: Markerless human motion
transfer. In: Proc. International Symposium

on 3D Data Processing, Visualization and
Transmission 2004, pp. 373–378
(2004)

7. Fels, S., Mase, K.: Interactive video
cubism. In: Proc. Workshop on New
Paradigms in Information Visualization and
Manipulation 99, pp. 78–82 (1999)

8. Klein, A.W., Sloan, P.P.J., Finkelstein, A.,
Cohen, M.F.: Stylized video cubes. In:
Proc. ACM SIGGRAPH Symposium on
Computer Animation 2002 (2002)

9. Li, Y., Sun, J., Shum, H.Y.: Video object
cut and paste. ACM Transactions on
Graphics 24(3), 595–600 (2005)

10. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.:
Lazy snapping. ACM Transactions on
Graphics 23(3), 303–308 (2004)

11. Matusik, W., Buehler, C., Raskar, R.,
Gortler, S.J., McMillan, L.: Image-based
visual hulls. In: Proc. ACM SIGGRAPH
2000, pp. 369–374 (2000)

12. Nievergelt, J., Hinterberger, H., Sevcik,
K.C.: The grid file: An adaptable,
symmetric multikey file structure. ACM
Transactions on Database Systems 9(1),
38–71 (1984)

13. Pasko, A., Adzhiev, V., Schmitt, B.,
Schlick, C.: Constructive hypervolume
modeling. Graphical Models 64(2) (2002)

14. Pauly, M., Gross, M.: Spectral processing
of point-sampled geometry. In: Proc. ACM
SIGGRAPH 2001, pp. 379–386 (2001)

15. Pauly, M., Gross, M., Kobbelt, L.: Efficient
simplification of point-sampled geometry.
In: Proc. IEEE Visualization 2002, pp.
163–170 (2002)

16. Pfister, H., Zwicker, M., van Baar, J.,
Gross, M.: Surfels: surface elements as
rendering primitives. In: Proc. ACM
SIGGRAPH 2000, pp. 335–342 (2000)

17. Rander, P., Narayanan, P., Kanade, T.:
Virtualized reality: Constructing
time-varying virtual worlds from real
events. In: Proc. IEEE Visualization 1997,
pp. 277–283 (1997)

18. Rother, C., Kolmogorov, V., Blake, A.:
“GrabCut” – interactive foreground
extraction using iterated graph cuts. ACM
Transactions on Graphics 23(3), 309–314
(2004)

19. Sadlo, F., Weyrich, T., Peikert, R., Gross,
M.: A practical structured light acquisition

Interactive 3D video editing 641

system for point-based geometry and
texture. In: Eurographics Symposium on
Point-Based Graphics 2005, pp. 89–98
(2005)

20. Snavely, N., Zitnick, L., Kang, S.B.,
Cohen, M.: Stylizing 2.5-d video. In: Proc.
International Symposium on
Non-Photorealistic Animation and
Rendering 2006, pp. 63–69 (2006)

21. Theobalt, C., Ahmed, N., de Aguiar, E.,
Ziegler, G., Lensch, H., Magnor, M.A.,
Seidel, H.P.: Joint motion and reflectance
capture for creating relightable 3D videos.
Research Report MPI-I-2005-4-004,
Max-Planck-Institut für Informatik (2005)

22. Vedula, S., Baker, S., Rander, P., Collins,
R., Kanade, T.: Three-dimensional scene
flow. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2005
27(3), 475–480 (2005)

23. Wang, J., Bhat, P., Colburn, R.A.,
Agrawala, M., Cohen, M.F.: Interactive
video cutout. ACM Transactions on
Graphics 24(3), 585–594 (2005)

24. Waschbüsch, M., Würmlin, S., Cotting, D.,
Sadlo, F., Gross, M.: Scalable 3D video of
dynamic scenes. The Visual Computer
21(8–10), 629–638 (2005)

25. Weyrich, T., Pauly, M., Keiser, R., Heinzle,
S., Scandella, S., Gross, M.:
Post-processing of scanned 3D surface
data. In: Eurographics Symposium on
Point-Based Graphics 2004, pp. 85–94
(2004)

26. Williams, L.: Casting curved shadows on
curved surfaces. In: Proc. ACM
SIGGRAPH 1978, pp. 270–274 (1978)

27. Woodring, J., Wang, C., Shen, H.W.: High
dimensional direct rendering of
time-varying volumetric data. In: Proc.

IEEE Visualization 2003, pp. 417–424
(2003)

28. Würmlin, S., Lamboray, E., Gross, M.: 3D
video fragments: Dynamic point samples
for real-time free-viewpoint video.
Computers & Graphics 28(1), 3–14 (2004)

29. Würmlin, S., Lamboray, E., Staadt, O.G.,
Gross, M.H.: 3D video recorder. In: Proc.
Pacific Graphics 2002, pp. 325–334 (2002)

30. Zitnick, C.L., Kang, S.B., Uyttendaele, M.,
Winder, S., Szeliski, R.: High-quality video
view interpolation using a layered
representation. ACM Transactions on
Graphics 23(3), 600–608 (2004)

31. Zwicker, M., Pauly, M., Knoll, O., Gross,
M.: Pointshop 3D: an interactive system for
point-based surface editing. ACM
Transactions on Graphics 21(3), 322–329
(2002)

MICHAEL WASCHBÜSCH currently a Ph.D.
candidate in the Computer Graphics Labora-
tory at ETH Zurich. In 2003, he received his
computer science diploma degree from the Uni-
versity of Kaiserslautern, Germany. His research
interests include 3D video, 3D reconstruction,
point-based rendering and graphics hardware.

DR. STEPHAN WÜRMLIN is currently a post-
doctoral researcher in the Computer Graphics
Laboratory at ETH Zurich and managing
director of the blue-c-II project (http://blue-
c-II.ethz.ch). He received a diploma degree
in computer science engineering from ETH
Zurich in 2000 and a PhD degree in computer
graphics from ETH Zurich in 2004. His PhD
thesis focused on the design of the 3D video
technology for the blue-c collaborative virtual
reality system. Part of this has been adopted by
MPEG as an extension of the MPEG-4 stan-
dard. Dr. Würmlin is member of ACM, ACM
SIGGRAPH and ACM SIGCHI. His current
research interests include free-viewpoint video,
video-based rendering, real-time rendering, vir-
tual reality and multimedia coding. Dr. Würmlin
is co-founder and CEO of LiberoVision AG,
a company focused on virtual content enhance-
ment technologies for sports broadcasting. He
was awarded the “Venture Leaders” young en-
trepreneur’s prize by the Gebert Rüf Foundation
and VentureLab in 2006.

DR. MARKUS GROSS is a professor of com-
puter science and director of the Computer
Graphics Laboratory of the Swiss Federal
Institute of Technology (ETH) in Zurich. He
received a master of science in electrical and
computer engineering and a PhD in computer
graphics and image analysis, both from the
University of Saarbrucken, Germany. From
1990 to 1994, Dr. Gross worked for the Com-
puter Graphics Center in Darmstadt, where
he established and directed the Visual Com-
puting Group. His research interests include
point-based graphics, physics-based modeling,
multiresolution analysis, and virtual reality. He
has been widely publishing and lecturing on
computer graphics and scientific visualization,
and he authored the book “Visual Computing”,
Springer, 1994. Dr. Gross has taught courses
at major graphics conferences including ACM
SIGGRAPH, IEEE Visualization, and Euro-
graphics. He is the associate editor of the IEEE
Computer Graphics and Applications and has
served as a member of international program
committees of many graphics conferences. Dr.
Gross has been a papers co-chair of the IEEE
Visualization ’99, the Eurographics 2000, and
the IEEE Visualization 2002 conferences. He
was chair of the papers committee of
ACM SIGGRAPH 2005. Dr. Gross is a senior
member of IEEE, a member of the IEEE Com-
puter Society, a member of ACM and ACM
Siggraph, and a member of the Eurographics
Association. Dr. Gross is on the advisory
boards of various international research insti-
tutes and governmental agencies. Dr Gross is
a cofounder of Cyfex AG, Novodex AG and
LiberoVision AG.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

