6 research outputs found

    Social perception drives eye-movement related brain activity: evidence from pro- and anti-saccades to faces

    Get PDF
    Social stimuli such as faces attract and retain attention to a greater extent than other objects. Using fMRI, we investigated how the activity of oculomotor and visual brain regions is modulated when participants look towards or away from visual stimuli belonging to different categories (faces and cars). We identified a region within the superior frontal sulcus showing greater difference between anti- and pro-saccades to faces than to cars, and thereby supporting inhibitory control in a social context. In contrast, ventral occipito-temporal regions and the amygdala, which are associated with face perception, showed higher activity for pro-saccades than anti-saccades for faces, but the reverse for cars, suggesting that contextual, top-down mechanisms modulate the functional specialisation of areas involved in perception. In addition, during saccades in the presence of faces, we found increased functional connectivity between the frontal eye-fields and other cortical and subcortical oculomotor structures, namely the inferior frontal eye field, the posterior parietal cortex and the basal ganglia, possibly reflecting the higher demand put on the oculomotor system to inhibit responses to socially salient stimuli. For the first time, these data highlight neural bases for the different orienting responses towards or away from faces as compared to other objects

    Neural mechanisms of resistance to peer influence in early adolescence

    Get PDF
    During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions

    Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis

    No full text
    Face, hands, and body movements are powerful signals essential for social interactions. In the last 2 decades, a large number of brain imaging studies have explored the neural correlates of the perception of these signals. Formal synthesis is crucially needed, however, to extract the key circuits involved in human motion perception across the variety of paradigms and stimuli that have been used. Here, we used the activation likelihood estimation (ALE) meta-analysis approach with random effect analysis. We performed meta-analyses on three classes of biological motion: movement of the whole body, hands, and face. Additional analyses of studies of static faces or body stimuli and sub-analyses grouping experiments as a function of their control stimuli or task employed allowed us to identify main effects of movements and forms perception, as well as effects of task demand. In addition to specific features, all conditions showed convergence in occipito-temporal and fronto-parietal regions, but with different peak location and extent. The conjunction of the three ALE maps revealed convergence in all categories in a region of the right posterior superior temporal sulcus as well as in a bilateral region at the junction between middle temporal and lateral occipital gyri. Activation in these regions was not a function of attentional demand and was significant also when controlling for non-specific motion perception. This quantitative synthesis points towards a special role for posterior superior temporal sulcus for integrating human movement percept, and supports a specific representation for body parts in middle temporal, fusiform, precentral, and parietal areas
    corecore