103 research outputs found

    Universal behaviour of a wave chaos based electromagnetic reverberation chamber

    Get PDF
    In this article, we present a numerical investigation of three-dimensional electromagnetic Sinai-like cavities. We computed around 600 eigenmodes for two different geometries: a parallelepipedic cavity with one half- sphere on one wall and a parallelepipedic cavity with one half-sphere and two spherical caps on three adjacent walls. We show that the statistical requirements of a well operating reverberation chamber are better satisfied in the more complex geometry without a mechanical mode-stirrer/tuner. This is to the fact that our proposed cavities exhibit spatial and spectral statistical behaviours very close to those predicted by random matrix theory. More specifically, we show that in the range of frequency corresponding to the first few hundred modes, the suppression of non-generic modes (regarding their spatial statistics) can be achieved by reducing drastically the amount of parallel walls. Finally, we compare the influence of losses on the statistical complex response of the field inside a parallelepipedic and a chaotic cavity. We demonstrate that, in a chaotic cavity without any stirring process, the low frequency limit of a well operating reverberation chamber can be significantly reduced under the usual values obtained in mode-stirred reverberation chambers

    Universal intensity statistics in a chaotic reverberation chamber to refine the criterion of statistical field uniformity

    Get PDF
    International audienceThis article presents a study of the intensity statistics of the electromagnetic response in a chaotic reverberation chamber (RC) in the presence of losses. Through an experimental investigation, intensity statistics of the response in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency. The present work illustrates how the universal statistical properties of the field in an actual chaotic RC can ensure the validity of the standard criterion proposed to evaluate the uniformity of the field distribution. In particular, through a theoretical approach based on the random matrix theory applied to open chaotic systems, we find that the modal overlap seems to be the only relevant parameter of the corresponding intensity distribution

    Statistiques de la réponse électromagnétique d'une chambre réverbérante chaotique

    Get PDF
    Cet article présente une étude de la réponse électromagnétique d'une chambre réverbérante (CR) chaotique en présence de pertes. Au moyen de simulations et d'expériences, sont comparées les fluctuations des maxima du champ obtenus dans une CR à brassage de modes conventionnelle et dans une CR chaotique au voisinage de la fréquence minimum d'utilisation. Ce travail illustre que les propriétés statistiques spectrales et spatiales universelles des CR chaotiques permettent de mieux répondre aux critères exigés par la norme pour réaliser des tests d'immunité ou de compatibilité électromagnétique

    Comparison of reverberation chamber shapes inspired from chaotic cavities

    Get PDF
    International audienceUsing the knowledge gained from the wave chaos theory, we present simple shapes of resonant cavities obtained by inserting metallic hemispheres or caps on the walls of a parallelepiped-shaped cavity. The presented simulation results show a significant improvement of the field statistical properties when the number of hemispheres or caps increases, and the comparison with a classical reverberation chamber geometry shows an improved homogeneity and isotropy can be attained using these new proposed shapes

    Multi-path fading and interference mitigation with Reconfigurable Intelligent Surfaces

    Get PDF
    We exploit multi-path fading propagation to improve both the signal-to-interference-plus-noise-ratio and the stability of wireless communications within electromagnetic environments that support rich multipath propagation. Quasi-passive propagation control with multiple binary reconfigurable intelligent surfaces is adopted to control the stationary waves supported by a metallic cavity hosting a software-defined radio link. Results are demonstrated in terms of the error vector magnitude minimization of a quadrature phase-shift modulation scheme under no-line-of-sight conditions. It is found that the magnitude of fluctuation of received symbols is reduced to a stable constellation by increasing the number of individual surfaces, or elements, thus demonstrating channel hardening. By using a second software-defined radio device as a jammer, we demonstrate the ability of the RIS to mitigate the co-channel interference by channel hardening. Results are of particular interest in smart radio environments for mobile network architectures beyond 5G

    A revised experimental protocol for implementing the actinometry method with the Reinecke’s salt

    Get PDF
    The present short note aims at proposing a revised experimental protocol to implement the actinometry method with Reinecke’s salt. It consists in substituting - for the dosing of the thiocyanate anions produced - perchloric acid (HClO4) by nitric acid (HNO3) - the latter being carefully chosen regarding the chemical equilibria occurring in the aqueous medium and the moderate risks of HNO3. This substitution has been rigorously validated by carrying out the experiments in a dedicated torus batch photoreactor enabling simple treatment of experimental results from a one-dimensional model

    Novel mechanism of inhibition of human angiotensin-I-converting enzyme (ACE) by a highly specific phosphinic tripeptide

    Get PDF
    Human ACE (angiotensin-I-converting enzyme) has long been regarded as an excellent target for the treatment of hypertension and related cardiovascular diseases. Highly potent inhibitors have been developed and are extensively used in the clinic. To develop inhibitors with higher therapeutic efficacy and reduced side effects, recent efforts have been directed towards the discovery of compounds able to simultaneously block more than one zinc metallopeptidase (apart from ACE) involved in blood pressure regulation in humans, such as neprilysin and ECE-1 (endothelin-converting enzyme-1). In the present paper, we show the first structures of testis ACE [C-ACE, which is identical with the C-domain of somatic ACE and the dominant domain responsible for blood pressure regulation, at 1.97Å (1 Å=0.1 nm)] and the N-domain of somatic ACE (N-ACE, at 2.15Å) in complex with a highly potent and selective dual ACE/ECE-1 inhibitor. The structural determinants revealed unique features of the binding of two molecules of the dual inhibitor in the active site of C-ACE. In both structures, the first molecule is positioned in the obligatory binding site and has a bulky bicyclic P1′ residue with the unusual R configuration which, surprisingly, is accommodated by the large S2′ pocket. In the C-ACE complex, the isoxazole phenyl group of the second molecule makes strong pi–pi stacking interactions with the amino benzoyl group of the first molecule locking them in a ‘hand-shake’ conformation. These features, for the first time, highlight the unusual architecture and flexibility of the active site of C-ACE, which could be further utilized for structure-based design of new C-ACE or vasopeptidase inhibitors
    corecore