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Abstract—This article presents a study of the intensity
statistics of the electromagnetic response in a chaotic rever-
beration chamber (RC) in the presence of losses. Through
an experimental investigation, intensity statistics of the
response in a conventional mode-stirred RC are compared
with those in a chaotic RC in the neighborhood of the
Lowest Useable Frequency. The present work illustrates
how the universal statistical properties of the field in an
actual chaotic RC can ensure the validity of the standard
criterion proposed to evaluate the uniformity of the field
distribution. In particular, through a theoretical approach
based on the random matrix theory applied to open chaotic
systems, we find that the modal overlap seems to be the
only relevant parameter of the corresponding intensity
distribution.

I. INTRODUCTION

Electromagnetic (EM) reverberation chambers are com-
monly used for electromagnetic compatibility (EMC) tests [1].
Due to mechanical or electronic stirring and to the presence
of loss mechanisms leading to modal overlap, the resulting
field is assumed to be statistically isotropic, uniform and de-
polarized. Such properties are well understood and correspond
to the so-called Hill’s hypotheses [2] when the excitation
frequency is well above the lowest useable frequency (LUF)
[1]. According to Hill’s assumptions [3], in this regime, the
EM field can be seen as a random superposition of plane
travelling waves. Near the LUF, where generally small or
moderate modal overlaps are observed, individual modes will
contribute to the EM response. In a conventional RC with
a regular rectangular shape, these low-lying modes display
highly non-isotropic patterns yielding a response which cannot
be expected to be statistically isotropic and uniform, even
in the presence of stirring. To the contrary, these statistical
requirements are naturally fulfilled by the vast majority of
modes in a chaotic cavity without the help of any stirring
process [4]. This generic statistical behavior of modes in a
chaotic cavity will be coined ergodicity in the following for the
sake of brevity. Numerous studies on EM RCs have considered
several cavity shapes of intrinsic chaotic behavior [5]–[7].
By comparing the experimental EM responses in a chaotic
RC and in a conventional mode-stirred RC, the ergodicity

of modes in a chaotic RC will be demonstrated to play a
key role in improving the statistical behavior of RCs in the
neighborhood of the LUF. In particular, we will show that, in
a frequency range near the estimated LUF, a generally admitted
criterion proposed by the International Standard IEC 61000-
4-21 [1] to evaluate the uniformity of the field distribution is
valid in the chaotic RC and not in the conventional one. This
important result is related to the universal statistical features of
chaotic cavities, in complete contradistinction with what can
be obtained in a conventional RC where the specific details
of the chamber lead to unpredictable statistical features due to
the lack of ergodicity.

II. STATISTICS OF THE RESPONSE IN A CHAOTIC RC -
THEORETICAL PREDICTIONS

We briefly give the main features of the statistical behavior
of the response of an open chaotic system which verifies
the hypotheses introduced by Pnini and Shapiro [8]. Then,
using the effective Hamiltonian formalism with the help of
random matrix theory applied to open chaotic systems (see for
instance [9] and references therein), we will deduce what can
be expected for the statistics of the EM response in a chaotic
RC [10]. For a given frequency of excitation, the EM response
is built upon a sum over resonant modes with mean spacing
∆f between adjacent resonant frequencies and average width
Γ. From these quantities, one defines the mean modal overlap
d = Γ/∆f ' 8πV f3c−3Q−1 where V is the volume of the
cavity and Q the mean quality factor.

For frequencies much larger than the LUF, generally im-
plying d � 1, Hill’s hypotheses are expected to be valid.
The latter yield a complex EM field, each Cartesian com-
ponent of which having real and imaginary parts which are
statistically independent and identically distributed following a
normal distribution. In this case, the distribution of the squared
modulus of each component follows an exponential law. This
regime has been extensively investigated in different contexts
such as nuclear physics (Ericson’s regime) and room acoustics
(Schroeder’s regime) [11]. However, near or slightly above the
LUF (where d . 1), the real and imaginary parts of each
component of the field are not identically distributed [10].
For a given frequency of excitation and a given configuration



of the cavity, in the case of an ideally chaotic RC, they
still are independently distributed according to normal laws,
but with different variances. Note that the latter statement
is true provided the field is appropriately normalized via

the transformation ~E → ~E/
√∫

V
~E · ~Ed~r which cancels the

global spatial phase of the field [10]. The ensuing distribution
of the squared modulus of each component Ia = |Ea|2 is then
no longer exponential and depends on a single parameter ρ,
called the phase rigidity, defined by:

ρ =

∫
V
~E · ~E d~r∫

V
|| ~E||2 d~r

. (1)

More precisely, in a chaotic RC, due to the ergodicity of
the modes contributing to the response, for a given excitation
frequency and a given configuration (stirrer position, polari-
sation and position of the sources), the probability distribu-
tion of the normalized intensity of the Cartesian component
Ĩa = |Ea|2 /

〈
|Ea|2

〉
~r

depends on the sole modulus of ρ and
is given by [12]

P (Ĩa; ρ) =
1√

1− |ρ|2
exp

[
− Ĩa

1− |ρ|2

]
I0

[
|ρ| Ĩa

1− |ρ|2

]
. (2)

This result was originally proposed by Pnini and Shapiro
[8] to model the statistics of scalar fields in partially open
chaotic systems. Note that the above distribution continuously
interpolates between the two extreme distributions, namely
Porter-Thomas for closed systems (|ρ| → 1) and exponential
for completely open systems (|ρ| = 0 ). Since the phase
rigidity is itself a distributed quantity, the distribution of
the normalized intensity for an ensemble of responses {Ĩa},
obtained for different frequencies or configurations, reads

Pa(Ĩa) =

∫ 1

0

Pρ(ρ)P (Ĩa; ρ)dρ (3)

where Pρ is the distribution of the phase rigidity of the
responses. In the framework of the random matrix theory
(RMT) for open chaotic systems, the latter distribution can
be evaluated by modeling all types of losses through M
channels coupling the inside of the cavity with its environment
(including antennas or Ohmic losses at walls). If, for the sake
of simplicity, all channels are assumed to be equally coupled,
in the limit of weak coupling, the coupling strength denoted κ
can be shown to be given by κ = πd

2M . Then, fixing the value
of the modal overlap d, one can simulate the response of a
lossy cavity through the effective Hamiltonian formalism of the
scattering matrix [9], [10] with M equally coupled channels
of strength given by the above relation.

III. STATISTICS OF THE RESPONSE IN A CHAOTIC RC -
EXPERIMENTAL REALIZATION

This section presents experimental results that were ob-
tained in a commercial RC equipped with a vertical stirrer.
The same RC was rendered chaotic by the addition of 3
metallic half-spheres on three adjacent walls (cf Fig. 1). The
chaotic character of such a modified RC was verified using the
methods described in [4].

In both configurations of this RC (bare or with half-
spheres) (V ' 19 m3), the S-matrix was measured between two

Fig. 1. Artist view of the reverberation chamber made chaotic through the
addition of 3 half-spheres. The volume of the RC is 19.1 m3 without the half-
spheres, each having a radius of 40 cm. A vertical stirrer can be seen in the
far corner and a monopole antenna fixed on a wooden tripod is shown.

antennas (one dipole fixed at a wall and one monopole fixed
on a moveable tripod) located at ~r1 and ~r2. Measurements
were realized for 1024 regularly spaced frequencies in the
interval [309 MHz, 410 MHz], for 30 positions of the stirrer
spaced by 12 degrees and for 8 different positions of the
monopole antenna inside the volume. After extracting the
coupling strength of the antennas [9], [10], one can deduce
from the measurement of S12 the normalized value of the
amplitude of the Cartesian component of the field along the
monopole antenna:

~E(~r2, f) · n̂a =
S12(f)

κ1κ2
. (4)

where κi (i = 1, 2) are the stirring-averaged values of the
frequency-dependent coupling constants of the antennas, and
n̂a is the unit vector along the polarisation of antenna 2. In the
frequency range of our study (of the order of 7 times the cut-off
frequency), the mean quality factor was estimated to be around
1500 (almost insensitive to the presence of the half-spheres)
corresponding to a mean modal overlap d∼ 0.89, which was
deduced directly from the measurements by extracting the
complex resonances using the method of harmonic inversion
[13]. From the measured value of d, we performed numerical
random matrix computations to deduce the corresponding
numerical distribution of the phase rigidity which we inserted
in expression (3) for the normalized intensity distribution.

In Fig. 2, the empirical histograms of the normalized inten-
sities of the field components (for all the excitation frequencies
and all configurations) for both RCs are compared with the
prediction (3). To evaluate the latter, the distribution Pρ is
deduced from a RMT numerical computation with d = 0.89
(see inset). The excellent agreement between expression (3)
and the empirical distribution associated to the chaotic RC
(red histogram) clearly demonstrates that the assumption of
ergodicity holds in the chaotic RC. These results also confirm
that the modal overlap seems to be the only relevant parameter
of the corresponding intensity distribution. Note that none of



Fig. 2. Empirical distributions of the normalized intensities: blue histogram
for the conventional RC and red histogram for the chaotic RC. Comparison
with the prediction (3) (green continuous curve) where Pρ is the distribution
deduced from a random matrix computation with d = 0.89 (see inset). The
dashed purple curve shows the exponential distribution expected under Hill’s
hypotheses.

the empirical distributions agree with the exponential distri-
bution (dashed purple curve) which is expected when Hill’s
hypotheses hold.

Preliminary investigations, based on numerical simulations
of the RMT type mentioned in the previous section [10], show
that Pρ only depends on d, irrespective of the values of M
and κ, as long as the coupling and the modal overlap are
weak or moderate. This single parameter dependence can be
substantiated through a simplified analytical approach based
on 2 × 2 random matrices where equal widths are assumed.
Then, using the Wigner surmise for the spacing distribution,
one can show that Pρ has the analytical form:

PWρ (ρ) =
2B exp[−2Bρ/(1− ρ)]

(1− ρ)2
, (5)

where B should be considered as a free parameter whose
limiting value would be πd2/4 in the weak overlap limit [14].
To check this surmise concerning the distribution of the phase
rigidity of the responses, we investigated a statistical ensemble
of responses numerically evaluated via a sum of resonances
taken from 1000 × 1000 random matrices of the Gaussian
Orthogonal Ensemble (GOE) (see for instance [9]) with all
widths set to a single value Γ such that d = Γ/∆f . For
different values of d ranging from 0.15 to 1, we fitted the
resulting numerical distributions of the phase rigidity with
expression (5), from which we could deduce an overall smooth
monotonic d-dependence of B of the type :

B(d) =
ad2

1 + bd
. (6)
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Fig. 3. Empirical evaluation of B parameter as a function of d obtained by
fitting an ensemble of distributions of phase rigidity (deduced from statistical
ensembles of responses numerically evaluated via a sum of resonances taken
from GOE random matrices where all widths are set to a single value Γ such
that d = Γ/∆f ) with the ansatz (5). The dashed-dotted curve is obtained
through a fit of B with expression (6), yielding a = 0.58 ± 0.04 and b =
2.3 ± 0.3. The value of B = 0.152 corresponding to the experimental value
of d = 0.89 is indicated.

This behavior is illustrated in Fig. 3. To be more specific,
for each value of d, we performed 10 different numerical
simulations each yielding one value for B. For each numerical
simulation, 50 GOE random matrices of rank 1000 were gener-
ated, from which 101 independent responses were evaluated in
the vicinity of the center of the spectrum. From these 50×101
responses, a histogram of the phase rigidity was obtained
which was then fitted by expression (5). Thus, for a given value
of d, 10 values of B were estimated (yielding the shown error
bars). The dashed-dotted curve is finally obtained through a fit
of B with the above expression (6), yielding a = 0.58± 0.04
and b = 2.3± 0.3.

To fix ideas about the relevance of the ansatz (5), a typical
plot of its expression is given in Fig. 4 for a value of B = 0.152
which is associated to the value of d = 0.89 deduced from
experimental results. It bears a clear resemblance to the his-
togram shown as inset of Fig. 2 in spite of differences for small
values of ρ which are most likely due to the oversimplified
approach leading to the ansatz (5).

We naturally wished to test the validity of the above ansatz
(5) proposed for the distribution of the phase rigidity, and more
specifically the dependence of the B-parameter as a function of
the modal overlap d shown in Fig. 3. To this end, we compared
the empirical distribution of the normalized intensities with
prediction (3) where we used expression (5) and the value of
B = 0.152 evaluated through equation (6) with the measured
value of d = 0.89 (see Fig. 3). The resulting analytical
prediction is in good agreement with the empirical one and is
nearly indistinguishable from the previously mentioned RMT
prediction (green curve of Fig. 2). In order to compare these
two predictions, we computed their root-mean-square errors
with respect to the empirical distribution. Both are very close.
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Fig. 4. A plot of expression (5) with B = 0.152 which is associated to the
measured value of d = 0.89 through the expression (6) shown in Fig. 3.

Indeed, the root-mean-square error is around 0.019 for the
prediction using expression (5) whereas it is around 0.013 with
the RMT prediction. This agreement strongly substantiates
our guess that he distribution of the phase rigidity seems
to depend only on the modal overlap, at least in the range
of parameters that we could explore, which corresponds to
a regime of weak coupling and moderate modal overlap.
We suggest that the approach described above could provide
an alternative cost-effective mean of extracting the modal
overlap parameter d, within a given frequency range, only
by inspecting spatial statistics (e.g. through the distribution of
the normalized intensity) and without the need of a frequency
analysis involving the method of harmonic inversion which
may prove to be not so straightforward when the modal overlap
becomes of the order of unity.

We finally wish to test how the above results can help
understand whether the field uniformity proposed by the Inter-
national Standard IEC 61000-4-21 [1] is still relevant near the
LUF. According to the latter, the fluctuations of the maxima
of the field amplitude can be evaluated through [1]:

σdB(f) = 20 log10

(
1 +

σmax

〈|Ea| max〉

)
(7)

where 8 measurement points are chosen in the RC distant
from at least a quarter of a wavelength. At each of these
points, for 30 uncorrelated positions of the stirrer, one extracts
the amplitude of the field |Ea| and one keeps the maximum
value |Ea| max. One then computes the average and the standard
deviation over the 8 values of |Ea| max. According to [1], the
field can be considered as uniform when σdB < 3dB. In
Fig. 5 we present a comparison of histograms of σdB obtained
experimentally in the two configurations mentioned above.The
chaotic RC (red curve of Fig. 5) complies almost always with
this criterion (only 6% above 3 dB) and in a much better way
than the conventional RC (blue dashed curve of Fig. 5) does
(about 30% above 3 dB). To correctly interpret these findings,
one should first note that, according to numerical simulations
of the EM responses in both RCs which are not presented
here, the frequencies for which σdB is larger than 3 dB, almost
always correspond to EM response patterns which are clearly
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Fig. 5. Fluctuations of the measured field amplitude maxima through
histograms of σdB defined by (7). Chaotic RC: red continuous histogram.
Conventional RC: blue dashed histogram. The chaotic RC displays only 6%
above 3 dB, whereas 30% lie above 3 dB in the conventional RC

not ergodic. Moreover, by increasing the number of points of
measurements, one numerically observes that the histograms
of σdB tend to concentrate around a unique average value well
below 3 dB in the chaotic RC whereas such a concentration is
not observed in the conventional RC. Again, the deep reason
for this difference stems upon the ergodicity of the response
in the chaotic RC which yields universal statistics which can
be fully accounted for through the universal properties of the
random matrix theory applied to open chaotic wave systems.

Hence, the above comparisons between chaotic and con-
ventional RCs demonstrate that ergodicity ensuing chaoticity
is the only certain way of obtaining meaningful results when
resorting to the uniformity criterion introduced by the standard
IEC 61000-4-21 to perform EMC tests.

IV. CONCLUSION

This article presents an experimental investigation of the
statistics of the EM response in a mode-stirred reverberation
chamber made chaotic by adding spherical elements on its
walls. A theoretical approach based on the random matrix
theory applied to chaotic open wave systems enables us to
predict the distribution of the normalized intensity of the
response in terms of a unique parameter, namely the mean
modal overlap. By means of a simplified random matrix
approach, we propose an ansatz expression for the distribution
of the phase rigidity of the response, with a unique free
parameter which we can numerically show to exhibit a simple
smooth monotonic dependence on the mean modal overlap.
This theoretical prediction is successfully compared to our
measurements in a chaotic RC, thereby confirming the key
role of the ergodic character of the response of a chaotic RC to
improve the statistical behavior of an RC in the neighborhood
of the LUF. In particular, these results demonstrate that the
criterion proposed by the standard to evaluate the uniformity
of the spatial field distribution, when used in the vicinity of
the LUF and in a regime of moderate modal overlap, is only
relevant if the RC is chaotic since the ergodicity of the response
can only be guaranteed in that case.
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