3,914 research outputs found

    The spin-1/2 anisotropic Heisenberg-chain in longitudinal and transversal magnetic fields: a DMRG study

    Full text link
    Using the density matrix renormalization group technique, we evaluate the low-energy spectrum (ground state and first excited states) of the anisotropic antiferromagnetic spin-one-half chain under magnetic fields. We study both homogeneous longitudinal and transversal fields as well as the influence of a transversal staggered field on opening of a spin-gap. We find that only a staggered transversal field opens a substantial gap.Comment: 6 pages, 11 figure

    Spontaneous breaking of the Fermi surface symmetry in the t-J model: a numerical study

    Full text link
    We present a variational Monte Carlo (VMC) study of spontaneous Fermi surface symmetry breaking in the t-J model. We find that the variational energy of a Gutzwiller projected Fermi sea is lowered by allowing for a finite asymmetry between the x- and the y-directions. However, the best variational state remains a pure superconducting state with d-wave symmetry, as long as the underlying lattice is isotropic. Our VMC results are in good overall agreement with slave boson mean field theory (SBMFT) and renormalized mean field theory (RMFT), although apparent discrepancies do show up in the half-filled limit, revealing some limitations of mean field theories. VMC and complementary RMFT calculations also confirm the SBMFT predictions that many-body interactions can enhance any anisotropy in the underlying crystal lattice. Thus, our results may be of consequence for the description of strongly correlated superconductors with an anisotropic lattice structure.Comment: 6 pages, 7 figures; final versio

    Emergent lattices with geometrical frustration in doped extended Hubbard models

    Full text link
    Spontaneous charge ordering occurring in correlated systems may be considered as a possible route to generate effective lattice structures with unconventional couplings. For this purpose we investigate the phase diagram of doped extended Hubbard models on two lattices: (i) the honeycomb lattice with on-site UU and nearest-neighbor VV Coulomb interactions at 3/43/4 filling (n=3/2n=3/2) and (ii) the triangular lattice with on-site UU, nearest-neighbor VV, and next-nearest-neighbor V′V' Coulomb interactions at 3/83/8 filling (n=3/4n=3/4). We consider various approaches including mean-field approximations, perturbation theory, and variational Monte Carlo. For the honeycomb case (i), charge order induces an effective triangular lattice at large values of U/tU/t and V/tV/t, where tt is the nearest-neighbor hopping integral. The nearest-neighbor spin exchange interactions on this effective triangular lattice are antiferromagnetic in most of the phase diagram, while they become ferromagnetic when UU is much larger than VV. At U/t∼(V/t)3U/t\sim (V/t)^3, ferromagnetic and antiferromagnetic exchange interactions nearly cancel out, leading to a system with four-spin ring-exchange interactions. On the other hand, for the triangular case (ii) at large UU and finite V′V', we find no charge order for small VV, an effective kagome lattice for intermediate VV, and one-dimensional charge order for large VV. These results indicate that Coulomb interactions induce [case (i)] or enhance [case(ii)] emergent geometrical frustration of the spin degrees of freedom in the system, by forming charge order.Comment: 18 pages, 26 figure

    Tunnelling matrix elements with antiferromagnetic Gutzwiller wave functions

    Full text link
    We use a generalized Gutzwiller Approximation (GA) elaborated to evaluate matrix elements with partially projected wave functions and formerly applied to homogeneous systems. In the present paper we consider projected single-particle (hole) excitations for electronic systems with antiferromagnetic (AFM) order and obtain the corresponding tunnelling probabilities. The accuracy and the reliability of our analytical approximation is tested using the Variational Monte Carlo (VMC). Possible comparisons with experimental results are also discussed.Comment: 16 pages, 10 figure

    Interaction induced Fermi-surface renormalization in the t1−t2t_1{-}t_2 Hubbard model close to the Mott-Hubbard transition

    Full text link
    We investigate the nature of the interaction-driven Mott-Hubbard transition of the half-filled t1−t2t_1{-}t_2 Hubbard model in one dimension, using a full-fledged variational Monte Carlo approach including a distance-dependent Jastrow factor and backflow correlations. We present data for the evolution of the magnetic properties across the Mott-Hubbard transition and on the commensurate to incommensurate transition in the insulating state. Analyzing renormalized excitation spectra, we find that the Fermi surface renormalizes to perfect nesting right at the Mott-Hubbard transition in the insulating state, with a first-order reorganization when crossing into the conducting state.Comment: 6 pages and 7 figure

    Spontaneous symmetry breaking in correlated wave functions

    Full text link
    We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the spawning of N\'eel order and dimerization in spin systems, and the stabilization of charge and orbital order in itinerant electronic systems.Comment: 13 pages, 11 figure

    Mott correlated states in the underdoped two-dimensional Hubbard model: variational Monte Carlo versus a dynamical cluster approximation

    Full text link
    We investigate the properties of the frustrated underdoped Hubbard model on the square lattice using two complementary approaches, the dynamical cluster extension of dynamical mean field theory, and variational Monte Carlo simulations of Gutzwiller-Jastrow wavefunctions with backflow corrections. We compare and discuss data for the energy and the double occupancies, as obtained from both approaches. At small dopings, we observe a rapid crossover from a weakly correlated metal at low interaction strength U to a non-Fermi liquid correlated state with strong local spin correlations. Furthermore, we investigate the stability of the correlated state against phase separation. We observe phase separation only for large values of U or very large frustration. No phase separation is present for the parameter range relevant for the cuprates.Comment: 8 pages, 8 figure

    Spin-liquid and magnetic phases in the anisotropic triangular lattice: the case of κ\kappa-(ET)2_2X

    Full text link
    The two-dimensional Hubbard model on the anisotropic triangular lattice, with two different hopping amplitudes tt and t′t^\prime, is relevant to describe the low-energy physics of κ\kappa-(ET)2_2X, a family of organic salts. The ground-state properties of this model are studied by using Monte Carlo techniques, on the basis of a recent definition of backflow correlations for strongly-correlated lattice systems. The results show that there is no magnetic order for reasonably large values of the electron-electron interaction UU and frustrating ratio t′/t=0.85t^\prime/t = 0.85, suitable to describe the non-magnetic compound with X=Cu2_2(CN)3_3. On the contrary, N\'eel order takes place for weaker frustrations, i.e., t′/t∼0.4÷0.6t^\prime/t \sim 0.4 \div 0.6, suitable for materials with X=Cu2_2(SCN)2_2, Cu[N(CN)2_2]Cl, or Cu[N(CN)2_2]Br.Comment: 7 pages, Physical Review B 80, 064419 (2009
    • …
    corecore