45 research outputs found

    Modifications to the Cauchy–Born rule: Applications in the deformation of single-walled carbon nanotubes

    Get PDF
    AbstractThis paper presents a study of the Cauchy–Born (CB) rule as applied to the deformation analysis of single-walled carbon nanotubes (SWNTs) that are modeled as 2-dimensional manifolds. The C–C bond vectors in the SWNT are assumed to deform according to the local deformation gradient as per the CB rule or a modified version thereof. Aspects of the CB rule related to spatial inhomogeneity of the deformation gradient at the atomic scale are investigated in the context of a specific class of extension–twist deformation problems. Analytic expressions are derived for the deformed bond lengths using the standard CB rule as well as modified versions of the standard CB rule. Since the deformation map is conveniently prescribed in this work, it is possible to compare the performance of these deformation rules with the exact solution (i.e. the exact analytic expression for the deformed bond vectors) given directly by the deformation map. This approach provides insights into the CB rule and its possible modifications for use in more complicated deformations where an explicit deformation map is not available. Specifically, it is concluded that in the case of inhomogeneous deformations at the atomic scale for which the CB rule is only approximate (as demonstrated in Section 1 of this paper), the mean value theorem in calculus can be used as a guide to modify the CB rule and construct a more rigorous and accurate atomistic–continuum connection. The deformed bond lengths are used to formulate an enriched continuum hyperelastic strain energy density function based on interatomic potentials (the multi-body Tersoff–Brenner [Tersoff, J., 1988. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000; Brenner, D.W., 1990. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471] empirical interatomic potential for carbon-carbon bonds is used in this work). The deformation map (and hence the deformation gradient, the bond vectors and the continuum strain energy density) contains certain parameters, some of which are imposed and others determined as a result of energy minimization in the standard variational formulation. Numerical results for kinematic coupling and binding energy per atom are presented in the case of imposed extension and twist deformations on representative chiral, zig-zag and armchair nanotubes using the CB rule and its modifications. These results are compared with the exact solution based on the deformation map which serves as a basis for evaluating the efficacy of these deformation rules. The ideas presented in this paper can also be directly extended to other lattices

    Tyrosine kinase inhibitor resistance in de novo BCR::ABL1–positive BCP-ALL beyond kinase domain mutations

    Get PDF
    A better understanding of ABL1 kinase domain mutation–independent causes of tyrosine kinase inhibitor (TKI) resistance is needed for BCR::ABL1–positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Although TKIs have dramatically improved outcomes, a subset of patients still experiences relapsed or refractory disease. We aimed to identify potential biomarkers of intrinsic TKI resistance at diagnosis in samples from 32 pediatric and 19 adult patients with BCR::ABL1–positive BCP-ALL. Reduced ex vivo imatinib sensitivity was observed in cells derived from newly diagnosed patients who relapsed after combined TKI and chemotherapy treatment compared with cells derived from patients who remained in continuous complete remission. We observed that ex vivo imatinib resistance was inversely correlated with the amount of (phosphorylated) BCR::ABL1/ABL1 protein present in samples that were taken at diagnosis without prior TKI exposure. This suggests an intrinsic cause of TKI resistance that is independent of functional BCR::ABL1 signaling. Simultaneous deletions of IKZF1 and CDKN2A/B and/or PAX5 (IKZF1plus), as well as deletions of PAX5 alone, were related to ex vivo imatinib resistance. In addition, somatic lesions involving ZEB2, SETD2, SH2B3, and CRLF2 were associated with reduced ex vivo imatinib sensitivity. Our data suggest that the poor prognostic value of IKZF1(plus) deletions is linked to intrinsic mechanisms of TKI resistance other than ABL1 kinase domain mutations in newly diagnosed pediatric and adult BCR::ABL1–positive BCP-ALL.</p

    Continuous PEGasparaginase Dosing Reduces Hypersensitivity Reactions in Pediatric ALL:A Dutch Childhood Oncology Group ALL11 Randomized Trial

    Get PDF
    PURPOSE:The primary objective of this randomized study was to determine whether a continuous dosing schedule (without the asparaginase-free interval) would result in less hypersensitivity reactions to PEGasparaginase (PEGasp) compared with the standard noncontinuous dosing schedule.METHODS:Eight hundred eighteen patients (age 1-18 years) with ALL were enrolled in the Dutch Childhood Oncology Group-ALL11 protocol and received PEGasp. Three hundred twelve patients stratified in the medium-risk arm were randomly assigned to receive 14 individualized PEGasp doses once every two weeks in either a noncontinuous or continuous schedule after the first three doses in induction (EudraCT: 2012-000067-25). Hypersensitivity reactions were defined as allergies, allergic-like reactions, and silent inactivation. Secondary end points were other asparaginase-related toxicities, asparaginase activity and antibody levels, and outcome.RESULTS:During induction, 27 of 818 patients (3.3%) experienced hypersensitivity reactions. After random assignment, 4 of 155 (2.6%) in the continuous treatment arm versus 17 of 157 (10.8%) patients in the noncontinuous treatment arm had hypersensitivity reactions (P &lt;.01), of which two (1.3%) versus 13 (8.3%) were inactivating reactions (P &lt;.01). The occurrence of inactivating hypersensitivity reactions was seven times lower in the continuous arm (odds ratio, 0.15 [0.032-0.653]). In addition, antibody levels were significantly lower in the continuous arm (P &lt;.01). With exception of a lower incidence of increased amylase in the continuous arm, there were no significant differences in total number of asparaginase-associated toxicities between arms. However, the timing of the toxicities was associated with the timing of the asparaginase administrations. No difference in 5-year cumulative incidence of relapse, death, or disease-free survival was found between both treatment arms.CONCLUSION:A continuous dosing schedule of PEGasp is an effective approach to prevent antibody formation and inactivating hypersensitivity reactions. The continuous PEGasp schedule did not increase toxicity and did not affect the efficacy of the therapy.</p

    Continuous PEGasparaginase Dosing Reduces Hypersensitivity Reactions in Pediatric ALL:A Dutch Childhood Oncology Group ALL11 Randomized Trial

    Get PDF
    PURPOSE:The primary objective of this randomized study was to determine whether a continuous dosing schedule (without the asparaginase-free interval) would result in less hypersensitivity reactions to PEGasparaginase (PEGasp) compared with the standard noncontinuous dosing schedule.METHODS:Eight hundred eighteen patients (age 1-18 years) with ALL were enrolled in the Dutch Childhood Oncology Group-ALL11 protocol and received PEGasp. Three hundred twelve patients stratified in the medium-risk arm were randomly assigned to receive 14 individualized PEGasp doses once every two weeks in either a noncontinuous or continuous schedule after the first three doses in induction (EudraCT: 2012-000067-25). Hypersensitivity reactions were defined as allergies, allergic-like reactions, and silent inactivation. Secondary end points were other asparaginase-related toxicities, asparaginase activity and antibody levels, and outcome.RESULTS:During induction, 27 of 818 patients (3.3%) experienced hypersensitivity reactions. After random assignment, 4 of 155 (2.6%) in the continuous treatment arm versus 17 of 157 (10.8%) patients in the noncontinuous treatment arm had hypersensitivity reactions (P &lt;.01), of which two (1.3%) versus 13 (8.3%) were inactivating reactions (P &lt;.01). The occurrence of inactivating hypersensitivity reactions was seven times lower in the continuous arm (odds ratio, 0.15 [0.032-0.653]). In addition, antibody levels were significantly lower in the continuous arm (P &lt;.01). With exception of a lower incidence of increased amylase in the continuous arm, there were no significant differences in total number of asparaginase-associated toxicities between arms. However, the timing of the toxicities was associated with the timing of the asparaginase administrations. No difference in 5-year cumulative incidence of relapse, death, or disease-free survival was found between both treatment arms.CONCLUSION:A continuous dosing schedule of PEGasp is an effective approach to prevent antibody formation and inactivating hypersensitivity reactions. The continuous PEGasp schedule did not increase toxicity and did not affect the efficacy of the therapy.</p

    Improved Outcome for ALL by Prolonging Therapy for IKZF1 Deletion and Decreasing Therapy for Other Risk Groups

    Get PDF
    PURPOSE: The ALL10 protocol improved outcomes for children with ALL by stratifying and adapting therapy into three minimal residual disease-defined risk groups: standard risk, medium risk (MR), and high risk. IKZF1-deleted (IKZF1del) ALL in the largest MR group still showed poor outcome, in line with protocols worldwide, accounting for a high number of overall relapses. ALL10 showed high toxicity in Down syndrome (DS) and excellent outcome in ETV6::RUNX1 ALL. Poor prednisone responders (PPRs) were treated as high risk in ALL10. In ALL11, we prolonged therapy for IKZF1del from 2 to 3 years. We reduced therapy for DS by omitting anthracyclines completely, for ETV6::RUNX1 in intensification, and for PPR by treatment as MR. METHODS:Eight hundred nineteen patients with ALL (age, 1-18 years) were enrolled on ALL11 and stratified as in ALL10. Results were compared with those in ALL10. RESULTS: The five-year overall survival (OS), event-free survival (EFS), cumulative risk of relapse (CIR), and death in complete remission on ALL11 were 94.2% (SE, 0.9%), 89.0% (1.2), 8.2% (1.1), and 2.3% (0.6), respectively. Prolonged maintenance for IKZF1del MR improved 5-year CIR by 2.2-fold (10.8% v 23.4%; P = .035) and EFS (87.1% v 72.3%; P = .019). Landmark analysis at 2 years from diagnosis showed a 2.9-fold reduction of CIR (25.6%-8.8%; P = .008) and EFS improvement (74.4%-91.2%; P = .007). Reduced therapy did not abrogate 5-year outcome for ETV6::RUNX1 (EFS, 98.3%; OS, 99.4%), DS (EFS, 87.0%; OS, 87.0%), and PPR (EFS, 81.1%; OS, 94.9%). CONCLUSION: Children with IKZF1del ALL seem to benefit from prolonged maintenance therapy. Chemotherapy was successfully reduced for patients with ETV6::RUNX1, DS, and PPR ALL. It has to be noted that these results were obtained in a nonrandomized study using a historical control group.</p

    Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia

    Get PDF
    Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1, EBF1, PAX5, CDKN2A/B, RB1, BTG1, ETV6, and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1-deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1-deleted primary BCR-ABL1-like and non-BCR-ABL1-like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1-like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses

    JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Get PDF
    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL

    Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Get PDF
    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1- like group were higher than in the non-BCR-ABL1-like B-others (p < 0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCRABL1- like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCRABL1- like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome

    Aggravated bone density decline following symptomatic osteonecrosis in children with acute lymphoblastic leukemia

    Get PDF
    Osteonecrosis and decline of bone density are serious side effects during and after treatment of childhood acute lymphoblastic leukemia. It is unknown whether osteonecrosis and low bone density occur together in the same patients, or whether these two osteogenic side-effects can mutually influence each other's development. Bone density and the incidence of symptomatic osteonecrosis were prospectively assessed in a national cohort of 466 patients with acute lymphoblastic leukemia (4-18 years of age) who were treated according to the dexamethasone-based Dutch Child Oncology Group-ALL9 protocol. Bone mineral density of the lumbar spine (BMDLS) (n= 466) and of the total body (BMDTB) (n=106) was measured by dual X-ray absorptiometry. Bone density was expressed as age-and gender-matched standard deviation scores. Thirty patients (6.4%) suffered from symptomatic osteonecrosis. At baseline, BMDLS and BMDTB did not differ between patients who did or did not develop osteonecrosis. At cessation of treatment, patients with osteonecrosis had lower mean BMDLS and BMDTB than patients without osteonecrosis (respectively, with osteonecrosis: -2.16 versus without osteonecrosis: -1.21, P</p
    corecore