17 research outputs found

    Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion

    Get PDF
    Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world's richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35% of the Earth's land surface in terms of those regions' areas, with the most widely distributed species Sonchus oleraceus occuring in 48% of the regions that cover 42% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4%) than mainland regions (29.5%), and fewer annual herbs (18.7% compared to 22.3%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide

    Frameworks used in invasion science: progress and prospects

    No full text
    Our understanding and management of biological invasions relies on our ability to classify and conceptualise the phenomenon. This need has stimulated the development of a plethora of frameworks, ranging in nature from conceptual to applied. However, most of these frameworks have not been widely tested and their general applicability is unknown. In order to critically evaluate frameworks in invasion science, we held a workshop on ‘Frameworks used in Invasion Science’ hosted by the DSI-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2019, which led to this special issue. For the purpose of the workshop we defined a framework as “a way of organising things that can be easily communicated to allow for shared understanding or that can be implemented to allow for generalisations useful for research, policy or management”. Further, we developed the Stellenbosch Challenge for Invasion Science: “Can invasion science develop and improve frameworks that are useful for research, policy or management, and that are clear as to the contexts in which the frameworks do and do not apply?”. Particular considerations identified among meeting participants included the need to identify the limitations of a framework, specify how frameworks link to each other and broader issues, and to improve how frameworks can facilitate communication. We believe that the 24 papers in this special issue do much to meet this challenge. The papers apply existing frameworks to new data and contexts, review how the frameworks have been adopted and used, develop useable protocols and guidelines for applying frameworks to different contexts, refine the frameworks in light of experience, integrate frameworks for new purposes, identify gaps, and develop new frameworks to address issues that are currently not adequately dealt with. Frameworks in invasion science must continue to be developed, tested as broadly as possible, revised, and retired as contexts and needs change. However, frameworks dealing with pathways of introduction, progress along the introduction-naturalisation-invasion continuum, and the assessment of impacts are being increasingly formalised and set as standards. This, we argue, is an important step as invasion science starts to mature as a discipline

    Frameworks used in invasion science: progress and prospects

    No full text
    Our understanding and management of biological invasions relies on our ability to classify and conceptualise the phenomenon. This need has stimulated the development of a plethora of frameworks, ranging in nature from conceptual to applied. However, most of these frameworks have not been widely tested and their general applicability is unknown. In order to critically evaluate frameworks in invasion science, we held a workshop on ‘Frameworks used in Invasion Science’ hosted by the DSI-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2019, which led to this special issue. For the purpose of the workshop we defined a framework as “a way of organising things that can be easily communicated to allow for shared understanding or that can be implemented to allow for generalisations useful for research, policy or management”. Further, we developed the Stellenbosch Challenge for Invasion Science: “Can invasion science develop and improve frameworks that are useful for research, policy or management, and that are clear as to the contexts in which the frameworks do and do not apply?”. Particular considerations identified among meeting participants included the need to identify the limitations of a framework, specify how frameworks link to each other and broader issues, and to improve how frameworks can facilitate communication. We believe that the 24 papers in this special issue do much to meet this challenge. The papers apply existing frameworks to new data and contexts, review how the frameworks have been adopted and used, develop useable protocols and guidelines for applying frameworks to different contexts, refine the frameworks in light of experience, integrate frameworks for new purposes, identify gaps, and develop new frameworks to address issues that are currently not adequately dealt with. Frameworks in invasion science must continue to be developed, tested as broadly as possible, revised, and retired as contexts and needs change. However, frameworks dealing with pathways of introduction, progress along the introduction-naturalisation-invasion continuum, and the assessment of impacts are being increasingly formalised and set as standards. This, we argue, is an important step as invasion science starts to mature as a discipline

    Frameworks used in invasion science: progress and prospects

    Get PDF
    Our understanding and management of biological invasions relies on our ability to classify and conceptualise the phenomenon. This need has stimulated the development of a plethora of frameworks, ranging in nature from conceptual to applied. However, most of these frameworks have not been widely tested and their general applicability is unknown. In order to critically evaluate frameworks in invasion science, we held a workshop on ‘Frameworks used in Invasion Science’ hosted by the DSI-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2019, which led to this special issue. For the purpose of the workshop we defined a framework as “a way of organising things that can be easily communicated to allow for shared understanding or that can be implemented to allow for generalisations useful for research, policy or management”. Further, we developed the Stellenbosch Challenge for Invasion Science: “Can invasion science develop and improve frameworks that are useful for research, policy or management, and that are clear as to the contexts in which the frameworks do and do not apply?”. Particular considerations identified among meeting participants included the need to identify the limitations of a framework, specify how frameworks link to each other and broader issues, and to improve how frameworks can facilitate communication. We believe that the 24 papers in this special issue do much to meet this challenge. The papers apply existing frameworks to new data and contexts, review how the frameworks have been adopted and used, develop useable protocols and guidelines for applying frameworks to different contexts, refine the frameworks in light of experience, integrate frameworks for new purposes, identify gaps, and develop new frameworks to address issues that are currently not adequately dealt with. Frameworks in invasion science must continue to be developed, tested as broadly as possible, revised, and retired as contexts and needs change. However, frameworks dealing with pathways of introduction, progress along the introduction-naturalisation-invasion continuum, and the assessment of impacts are being increasingly formalised and set as standards. This, we argue, is an important step as invasion science starts to mature as a discipline

    Frameworks used in invasion science: progress and prospects

    Get PDF
    Our understanding and management of biological invasions relies on our ability to classify and conceptualise the phenomenon. This need has stimulated the development of a plethora of frameworks, ranging in nature from conceptual to applied. However, most of these frameworks have not been widely tested and their general applicability is unknown. In order to critically evaluate frameworks in invasion science, we held a workshop on ‘Frameworks used in Invasion Science’ hosted by the DSI-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2019, which led to this special issue. For the purpose of the workshop we defined a framework as “a way of organising things that can be easily communicated to allow for shared understanding or that can be implemented to allow for generalisations useful for research, policy or management”. Further, we developed the Stellenbosch Challenge for Invasion Science: “Can invasion science develop and improve frameworks that are useful for research, policy or management, and that are clear as to the contexts in which the frameworks do and do not apply?”. Particular considerations identified among meeting participants included the need to identify the limitations of a framework, specify how frameworks link to each other and broader issues, and to improve how frameworks can facilitate communication. We believe that the 24 papers in this special issue do much to meet this challenge. The papers apply existing frameworks to new data and contexts, review how the frameworks have been adopted and used, develop useable protocols and guidelines for applying frameworks to different contexts, refine the frameworks in light of experience, integrate frameworks for new purposes, identify gaps, and develop new frameworks to address issues that are currently not adequately dealt with. Frameworks in invasion science must continue to be developed, tested as broadly as possible, revised, and retired as contexts and needs change. However, frameworks dealing with pathways of introduction, progress along the introduction-naturalisation-invasion continuum, and the assessment of impacts are being increasingly formalised and set as standards. This, we argue, is an important step as invasion science starts to mature as a discipline

    Intergrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions.

    No full text
    1. Ornamental horticulture is the primary pathway for invasive alien plant introductions. We critically appraise published evidence on the effectiveness of four policy instruments that tackle invasions along the horticulture supply chain: pre-border import restrictions, post-border bans, industry codes of conduct and consumer education. 2. Effective pre-border interventions rely on rigorous risk assessment and high industry compliance. Post-border sales bans become progressively less effective when alien species become widespread in a region. 3. A lack of independent performance evaluation and of public disclosure, limits the uptake and effectiveness of voluntary codes of conduct and discourages shifts in consumer preference away from invasive alien species. 4. Policy implications. Closing the plant invasion pathway associated with ornamental horticulture requires government-industry agreements to fund effective pre-and post-border weed risk assessments that can be subsequently supported by widely adopted, as well as verifiable, industry codes of conduct. This will ensure producers and consumers make informed choices in the face of better targeted public education addressing plant invasions

    Oxidative stress response in sugarcane

    No full text
    Oxidative stress response in plants is still poorly understood in comparison with the correspondent phenomenon in bacteria, yeast and mammals. For instance, nitric oxide is assumed to play various roles in plants although no nitric oxide synthase gene has yet been isolated. This research reports the results of a search of the sugarcane expressed sequence tag (SUCEST) database for homologous sequences involved in the oxidative stress response. I have not found any gene similar to nitric oxide synthase in the SUCEST database although an alternative pathway for nitric oxide synthesis was proposed. I have also found several genes involved in antioxidant defense, e.g. metal chelators, low molecular weight compounds, antioxidant enzymes and repair systems. Ascorbate (vitamin C) is a key antioxidant in plants because it reaches high concentrations in cells and is a substrate for ascorbate peroxidase, an enzyme that I found in different isoforms in the SUCEST database. I also found many enzymes involved in the biosynthesis of low molecular weight antioxidants, which may be potential targets for genetic manipulation. The engineering of plants for increased vitamin C and E production may lead to improvements in the nutritional value and stress tolerance of sugarcane. The components of the antioxidant defense system interact and their synthesis is probably closely regulated. Transcription factors involved in regulation of the oxidative stress response in bacteria, yeast and mammals differ considerably among themselves and when I used them to search the SUCEST database only genes with weak similarities were found, suggesting that these transcription regulators are not very conserved. The involvement of reactive oxygen species and antioxidants in plant defense against pathogens is also discussed.<br>A resposta ao estresse oxidativo nĂŁo Ă© bem conhecida em plantas como em bactĂ©rias, leveduras e humanos. Por exemplo, assume-se que Ăłxido nĂ­trico tem vĂĄrias funçÔes em plantas apesar do gene que codificaria para Ăłxido nĂ­trico sintetase nunca ter sido isolado. Este trabalho descreve os resultados de uma busca no banco de dados de seqĂŒĂȘncias expressas de cana de açĂșcar (SUCEST) de genes envolvidos na resposta ao estresse oxidativo. Eu nĂŁo encontrei genes similares a Ăłxido nĂ­trico no banco de dados do SUCEST, mas uma via alternativa para a produção deste radical livre pode ser proposta. Eu tambĂ©m encontrei vĂĄrios genes envolvidos na defesa antioxidante, como quelantes de metais, antioxidantes de baixo peso molecular, enzimas antioxidantes e sistemas de reparo. Ascorbato (vitamina C) Ă© um importante antioxidante em plantas porque Ă© encontrado em altas concentraçÔes em cĂ©lulas vegetais e porque Ă© substrato de ascorbato peroxidase, uma enzima que eu encontrei em diferentes isoformas no banco de dados do SUCEST. Eu tambĂ©m encontrei vĂĄrias enzimas envolvidas na biossĂ­ntese de antioxidantes de baixo peso molecular que podem ser alvos para manipulação genĂ©tica. A obtenção de plantas modificadas geneticamente que sintetizariam vitaminas C e E em altos nĂ­veis poderiam melhorar o valor nutricional e a tolerĂąncia a estresses de cana de açĂșcar. Os diversos componentes do sistema de defesa antioxidante interagem entre si e as suas sĂ­nteses devem ser muito bem reguladas. Fatores de transcrição envolvidos na regulação da resposta ao estresse oxidativo de bactĂ©rias, leveduras e de humanos diferem consideravelmente entre si e quando foram utilizados para buscas no banco de dados do SUCEST, somente genes com similaridades fracas foram encontrados, sugerindo que estas proteĂ­nas nĂŁo sĂŁo muito conservadas. O envolvimento de espĂ©cies reativas de oxigĂȘnio e nitrogĂȘnio na defesa de plantas contra patĂłgenos tambĂ©m Ă© discutido neste trabalho
    corecore