452 research outputs found
UVOT Measurements of Dust and Star Formation in the SMC and M33
When measuring star formation rates using ultraviolet light, correcting for
dust extinction is a critical step. However, with the variety of dust
extinction curves to choose from, the extinction correction is quite uncertain.
Here, we use Swift/UVOT to measure the extinction curve for star-forming
regions in the SMC and M33. We find that both the slope of the curve and the
strength of the 2175 Angstrom bump vary across both galaxies. In addition, as
part of our modeling, we derive a detailed recent star formation history for
each galaxy.Comment: 6 pages, 5 figures, conference proceedings from Swift: 10 years of
Discovery, held in Rome (2-5 Dec. 2014
Locating Star-Forming Regions in Quasar Host Galaxies
We present a study of the morphology and intensity of star formation in the
host galaxies of eight Palomar-Green quasars using observations with the Hubble
Space Telescope. Our observations are motivated by recent evidence for a close
relationship between black hole growth and the stellar mass evolution in its
host galaxy. We use narrow-band [O II] 3727, H, [O III]
5007 and Pa images, taken with the WFPC2 and NICMOS
instruments, to map the morphology of line-emitting regions, and, after
extinction corrections, diagnose the excitation mechanism and infer
star-formation rates. Significant challenges in this type of work are the
separation of the quasar light from the stellar continuum and the
quasar-excited gas from the star-forming regions. To this end, we present a
novel technique for image decomposition and subtraction of quasar light. Our
primary result is the detection of extended line-emitting regions with sizes
ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus,
powered primarily by star formation. We determine star-formation rates of order
a few tens of M/yr. The host galaxies of our target quasars have
stellar masses of order M and specific star formation rates
on a par with those of M82 and luminous infrared galaxies. As such they fall at
the upper envelope or just above the star-formation mass sequence in the
specific star formation vs stellar mass diagram. We see a clear trend of
increasing star formation rate with quasar luminosity, reinforcing the link
between the growth of the stellar mass of the host and the black hole mass
found by other authors.Comment: Accepted for publication in M.N.R.A.
The Evolution of the Far-UV Luminosity Function and Star Formation Rate Density of the Chandra Deep Field South from z=0.2-1.2 with Swift/UVOT
We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600A to
4000A) imaging of the Chandra Deep Field South to measure the rest-frame far-UV
(FUV; 1500A) luminosity function (LF) in four redshift bins between z=0.2 and
1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to
construct and fit the LFs: the traditional V_max method with bootstrap errors
and a maximum likelihood estimator. We observe luminosity evolution such that
M* fades by ~2 magnitudes from z~1 to z~0.3 implying that star formation
activity was substantially higher at z~1 than today. We integrate our LFs to
determine the FUV luminosity densities and star formation rate densities from
z=0.2 to 1.2. We find evolution consistent with an increase proportional to
(1+z)^1.9 out to z~1. Our luminosity densities and star formation rates are
consistent with those found in the literature, but are, on average, a factor of
~2 higher than previous FUV measurements. In addition, we combine our UVOT data
with the MUSYC survey to model the galaxies' ultraviolet-to-infrared spectral
energy distributions and estimate the rest-frame FUV attenuation. We find that
accounting for the attenuation increases the star formation rate densities by
~1 dex across all four redshift bins.Comment: 20 pages, 8 figures, 6 tables; accepted for publication in Ap
Morphology and evolution of emission line galaxies in the Hubble Ultra Deep Field
We investigate the properties and evolution of a sample of galaxies selected
to have prominent emission lines in low-resolution grism spectra of the Hubble
Ultra Deep Field (HUDF). These objects, eGRAPES, are late type blue galaxies,
characterized by small proper sizes (R_50 < 2 kpc) in the 4350A rest-frame, low
masses (5x10^9 M_sun), and a wide range of luminosities and surface
brightnesses. The masses, sizes and volume densities of these objects appear to
change very little up to a redshift of z=1.5. On the other hand, their surface
brightness decreases significantly from z=1.5 to z=0 while their mass-to-light
ratio increases two-folds. This could be a sign that most of low redshift
eGRAPES have an older stellar population than high redshift eGRAPES and hence
that most eGRAPES formed at higher redshifts. The average volume density of
eGRAPES is (1.8 \pm 0.3)x10^{-3} Mpc^{-3} between 0.3 < z < 1.5. Many eGRAPES
would formally have been classified as Luminous Compact Blue Galaxies (LCBGs)
if these had been selected based on small physical size, blue intrinsic color,
and high surface brightness, while the remainder of the sample discussed in
this paper forms an extension of LCBGs towards fainter luminosities.Comment: Accepted, to appear in Ap
Measuring Dust Attenuation Curves of SINGS/KINGFISH Galaxies Using Swift/UVOT Photometry
We present Swift/Ultraviolet Optical Telescope (UVOT) integrated light
photometry of the Spitzer Infrared Nearby Galaxies Survey (SINGS) and the Key
Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH)
samples of nearby galaxies. Combining the Swift/UVOT data with archival
photometry, we investigate a variety of dust attenuation curves derived using
MCSED, a flexible spectral energy distribution fitting code. We fit the
panchromatic data using three different star formation history (SFH)
parameterizations: a decaying exponential, a double power law, and a piecewise
function with breaks at physically motivated ages. We find that the average
attenuation law of the sample changes slightly based on the SFH assumed.
Specifically, the exponential SFH leads to the shallowest attenuation curves.
Using simulated data, we also find the exponential SFH fails to outperform the
more complex SFHs. Finally, we find a systematic offset in the derived bump
strength between SED fits with and without UVOT data, where the inclusion of
UVOT data leads to smaller bump strengths, highlighting the importance of the
UVOT data. This discrepancy is not seen in fits to mock photometry.
Understanding dust attenuation in the local universe is key to understanding
high redshift objects where rest-frame far-infrared data is unavailable.Comment: 30 pages, 13 figures, accepted for publication in Ap
A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution
We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray
burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB
afterglow catalog. The second catalog is constructed from a database containing
over 120,000 independent UVOT observations of 538 GRBs first detected by Swift,
the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray
Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi,
and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs
discovered from 2005 Jan 17 to 2010 Dec 25. Using photometric information in
three UV bands, three optical bands, and a `white' or open filter, the data are
optimally co-added to maximize the number of detections and normalized to one
band to provide a detailed light curve. The catalog provides positional,
temporal, and photometric information for each burst, as well as Swift Burst
Alert Telescope (BAT) and X-Ray Telescope (XRT) GRB parameters. Temporal slopes
are provided for each UVOT filter. The temporal slope per filter of almost half
the GRBs are fit with a single power-law, but one to three breaks are required
in the remaining bursts. Morphological comparisons with the X-ray reveal that
approximately 75% of the UVOT light curves are similar to one of the four
morphologies identified by Evans et al. (2009). The remaining approximately 25%
have a newly identified morphology. For many bursts, redshift and extinction
corrected UV/optical spectral slopes are also provided at 2000, 20,000, and
200,000 seconds.Comment: 44 pages, 14 figures, to be published in Astrophysical Journal
Supplementa
- …