45 research outputs found

    Venezuelan Equine Encephalitis Virus Transmission and Effect on Pathogenesis

    Get PDF
    Quantifying the dose of an arbovirus transmitted by mosquitoes is essential for designing pathogenesis studies simulating natural infection of vertebrates. Titration of saliva collected in vitro from infected mosquitoes may not accurately estimate titers transmitted during blood feeding, and infection by needle injection may affect vertebrate pathogenesis. We compared the amount of Venezuelan equine encephalitis virus collected from the saliva of Aedes taeniorhynchus to the amount injected into a mouse during blood feeding. Less virus was transmitted by mosquitoes in vivo (geometric mean 11 PFU) than was found for comparable times of salivation in vitro (mean saliva titer 74 PFU). We also observed slightly lower early and late viremia titers in mice that were needle injected with 8 PFU, which represents the low end of the in vivo transmission range. No differences in survival were detected, regardless of the dose or infection route

    Characterization of dengue complex-reactive epitopes on dengue 3 virus envelope protein domain III

    Get PDF
    AbstractThe disease dengue (DEN) is caused by four genetically and serologically related viruses termed DENV-1, -2, -3, and -4. The DENV envelope (E) protein ectodomain can be divided into three structural domains designated ED1, ED2, and ED3. The ED3 contains the DENV type-specific and DENV complex-reactive (epitopes shared by DENV 1–4) antigenic sites. In this study the epitopes recognized by four DENV complex-reactive monoclonal antibodies (MAbs) with neutralizing activity were mapped on the DENV-3 ED3 using a combination of physical and biological techniques. Amino acid residues L306, K308, G381, I387, and W389 were critical for all four MAbs, with residues V305, E309, V310, K325, D382, A384, K386, and R391 being critical for various subsets of the MAbs. A previous study by our group (Gromowski, G.D., Barrett, N.D., Barrett, A.D., 2008. Characterization of dengue complex-specific neutralizing epitopes on the envelope protein domain III of dengue 2 virus. J. Virol 82, 8828–8837) characterized the same panel of MAbs with DENV-2. The location of the DENV complex-reactive antigenic site on the DENV-2 and DENV-3 ED3s is similar; however, the critical residues for binding are not identical. Overall, this indicates that the DENV complex-reactive antigenic site on ED3 may be similar in location, but the surprising result is that DENV 2 and 3 exhibit unique sets of residues defining the energetics of interaction to the same panel of MAbs. These results imply that the amino acid sequences of DENV define a unique interaction network among these residues in spite of the fact that all flavivirus ED3s to date assume the same structural fold

    Reduced maternal immunity and vertical transfer of immunity against SARS-CoV-2 variants of concern with COVID-19 exposure or initial vaccination in pregnancy.

    Get PDF
    INTRODUCTION: As the SARS-CoV-2 pandemic continues to evolve, we face new variants of concern with a concurrent decline in vaccine booster uptake. We aimed to evaluate the difference in immunity gained from the original SARS-CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during pregnancy against recent variants of concern. STUDY DESIGN: This is a retrospective analysis of previously collected samples from 192 patients who delivered between February 2021 and August 2021. Participants were categorized as 1) COVID vaccine: mRNA vaccine in pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was neutralizing capacity against wild-type, Delta, and Omicron-B1 between cohorts. Secondary outcomes include a comparison of cord-blood ID50 as well as the efficiency of vertical transfer, measured by cord-blood:maternal blood ID50 for each variant. RESULTS: Pregnant women with COVID-19 vaccination had a greater spike in IgG titers compared to both those with COVID-19 disease exposure and controls. Both COVID exposure and vaccination resulted in immunity against Delta, but only COVID vaccination resulted in significantly greater Omicron ID-50 versus controls. The neutralizing capacity of serum from newborns was lower than that of their mothers, with COVID-vaccination demonstrating higher cord-blood ID50 vs wildtype and Delta variants compared to control or COVID-exposed, but neither COVID-exposure nor vaccination demonstrated significantly higher Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood ID50 with COVID vaccination compared to COVID-19 exposure for wild-type and Delta respectively. In pair-wise comparison, vertical transfer of neutralization capacity (cord-blood:maternal blood ID50) was greatest for wild-type and progressively reduced for Delta and Omicron ID50. CONCLUSION: Pregnant patients with either an initial mRNA vaccination series or COVID-exposure demonstrated reduced immunity against newer variants compared to wild-type as has been reported for non-pregnant individuals; however, the COVID-vaccination series afforded greater cross-variant immunity to pregnant women, specifically against Omicron, than COVID-disease. Vertical transfer of immunity is greater in those with COVID vaccination vs COVID disease exposure but is reduced with progressive variants. Our results reinforce the importance of bivalent booster vaccination in pregnancy for both maternal and infant protection and also provide a rationale for receiving updated vaccines as they become available

    Monomeric IgA Antagonizes IgG-Mediated Enhancement of DENV Infection

    Get PDF
    Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of Fc gamma receptor-bearing cells. While IgM and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and others have described the induction of DENV-specific serum IgA responses during dengue. We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in Fc gamma receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of DENV-reactive IgA induced by DENV infection might regulate the overall IgG mediated ADE activity of DENV-immune plasma in vivo, and may serve as a predictor of disease risk

    Reduced maternal immunity and vertical transfer of immunity against SARS-CoV-2 variants of concern with COVID-19 exposure or initial vaccination in pregnancy

    Get PDF
    IntroductionAs the SARS-CoV-2 pandemic continues to evolve, we face new variants of concern with a concurrent decline in vaccine booster uptake. We aimed to evaluate the difference in immunity gained from the original SARS-CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during pregnancy against recent variants of concern.Study DesignThis is a retrospective analysis of previously collected samples from 192 patients who delivered between February 2021 and August 2021. Participants were categorized as 1) COVID vaccine: mRNA vaccine in pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was neutralizing capacity against wild-type, Delta, and Omicron-B1 between cohorts. Secondary outcomes include a comparison of cord-blood ID50 as well as the efficiency of vertical transfer, measured by cord-blood:maternal blood ID50 for each variant.ResultsPregnant women with COVID-19 vaccination had a greater spike in IgG titers compared to both those with COVID-19 disease exposure and controls. Both COVID exposure and vaccination resulted in immunity against Delta, but only COVID vaccination resulted in significantly greater Omicron ID-50 versus controls. The neutralizing capacity of serum from newborns was lower than that of their mothers, with COVID-vaccination demonstrating higher cord-blood ID50 vs wildtype and Delta variants compared to control or COVID-exposed, but neither COVID-exposure nor vaccination demonstrated significantly higher Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood ID50 with COVID vaccination compared to COVID-19 exposure for wild-type and Delta respectively. In pair-wise comparison, vertical transfer of neutralization capacity (cord-blood:maternal blood ID50) was greatest for wild-type and progressively reduced for Delta and Omicron ID50.ConclusionPregnant patients with either an initial mRNA vaccination series or COVID-exposure demonstrated reduced immunity against newer variants compared to wild-type as has been reported for non-pregnant individuals; however, the COVID-vaccination series afforded greater cross-variant immunity to pregnant women, specifically against Omicron, than COVID-disease. Vertical transfer of immunity is greater in those with COVID vaccination vs COVID disease exposure but is reduced with progressive variants. Our results reinforce the importance of bivalent booster vaccination in pregnancy for both maternal and infant protection and also provide a rationale for receiving updated vaccines as they become available

    Temporally Integrated Single Cell RNA Sequencing Analysis of PBMC from Experimental and Natural Primary Human DENV-1 Infections

    Get PDF
    Dengue human infection studies present an opportunity to address many longstanding questions in the field of flavivirus biology. However, limited data are available on how the immunological and transcriptional response elicited by an attenuated challenge virus compares to that associated with a wild-type DENV infection. To determine the kinetic transcriptional signature associated with experimental primary DENV-1 infection and to assess how closely this profile correlates with the transcriptional signature accompanying natural primary DENV-1 infection, we utilized scRNAseq to analyze PBMC from individuals enrolled in a DENV-1 human challenge study and from individuals experiencing a natural primary DENV-1 infection. While both experimental and natural primary DENV-1 infection resulted in overlapping patterns of inflammatory gene upregulation, natural primary DENV-1 infection was accompanied with a more pronounced suppression in gene products associated with protein translation and mitochondrial function, principally in monocytes. This suggests that the immune response elicited by experimental and natural primary DENV infection are similar, but that natural primary DENV-1 infection has a more pronounced impact on basic cellular processes to induce a multi-layered anti-viral state

    An Innovative, Prospective, Hybrid Cohort-Cluster Study Design to Characterize Dengue Virus Transmission in Multigenerational Households in Kamphaeng Phet, Thailand

    Get PDF
    Difficulties inherent in the identification of immune correlates of protection or severe disease have challenged the development and evaluation of dengue vaccines. There persist substantial gaps in knowledge about the complex effects of age and sequential dengue virus (DENV) exposures on these correlations. To address these gaps, we were conducting a novel family-based cohort-cluster study for DENV transmission in Kamphaeng Phet, Thailand. The study began in 2015 and is funded until at least 2023. As of May 2019, 2,870 individuals in 485 families were actively enrolled. The families comprise at least 1 child born into the study as a newborn, 1 other child, a parent, and a grandparent. The median age of enrolled participants is 21 years (range 0–93 years). Active surveillance is performed to detect acute dengue illnesses, and annual blood testing identifies subclinical seroconversions. Extended follow-up of this cohort will detect sequential infections and correlate antibody kinetics and sequence of infections with disease outcomes. The central goal of this prospective study is to characterize how different DENV exposure histories within multigenerational family units, from DENV-naive infants to grandparents with multiple prior DENV exposures, affect transmission, disease, and protection at the level of the individual, household, and community

    Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies

    Get PDF
    Dengue virus (DENV) is a worldwide health burden, and a safe vaccine is needed. Neutralizing antibodies bind to quaternary epitopes on DENV envelope (E) protein homodimers. However, recombinantly expressed soluble E proteins are monomers under vaccination conditions and do not present these quaternary epitopes, partly explaining their limited success as vaccine antigens. Using molecular modeling, we found DENV2 E protein mutations that induce dimerization at low concentrations (\u3c100 pM) and enhance production yield by more than 50-fold. Cross-dimer epitope antibodies bind to the stabilized dimers, and a crystal structure resembles the wild-type (WT) E protein bound to a dimer epitope antibody. Mice immunized with the stabilized dimers developed antibodies that bind to E dimers and not monomers and elicited higher levels of DENV2-neutralizing antibodies compared to mice immunized with WT E antigen. Our findings demonstrate the feasibility of using structure-based design to produce subunit vaccines for dengue and other flaviviruses

    Convalescent human IgG, but not IgM, from COVID-19 survivors confers dose-dependent protection against SARS-CoV-2 replication and disease in hamsters

    Get PDF
    IntroductionAntibody therapeutic strategies have served an important role during the COVID-19 pandemic, even as their effectiveness has waned with the emergence of escape variants. Here we sought to determine the concentration of convalescent immunoglobulin required to protect against disease from SARS-CoV-2 in a Syrian golden hamster model.MethodsTotal IgG and IgM were isolated from plasma of SARS-CoV-2 convalescent donors. Dose titrations of IgG and IgM were infused into hamsters 1 day prior to challenge with SARS-CoV-2 Wuhan-1.ResultsThe IgM preparation was found to have ~25-fold greater neutralization potency than IgG. IgG infusion protected hamsters from disease in a dose-dependent manner, with detectable serum neutralizing titers correlating with protection. Despite a higher in vitro neutralizing potency, IgM failed to protect against disease when transferred into hamsters.DiscussionThis study adds to the growing body of literature that demonstrates neutralizing IgG antibodies are important for protection from SARS-CoV-2 disease, and confirms that polyclonal IgG in sera can be an effective preventative strategy if the neutralizing titers are sufficiently high. In the context of new variants, against which existing vaccines or monoclonal antibodies have reduced efficacy, sera from individuals who have recovered from infection with the emerging variant may potentially remain an efficacious tool

    Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus

    Get PDF
    AbstractThe surface of the mature dengue virus (DENV) particle consists of 90 envelope (E) protein dimers that mediate both receptor binding and fusion. The E protein ectodomain can be divided into three structural domains designated ED1, ED2, and ED3, of which ED3 contains the critical and dominant virus-specific neutralization sites. In this study the ED3 epitopes recognized by seven, murine, IgG1 DENV-2 type-specific, monoclonal antibodies (MAbs) were determined using site-directed mutagenesis of a recombinant DENV-2 ED3 (rED3) protein. A total of 41 single amino acid substitutions were introduced into the rED3 at 30 different surface accessible residues. The affinity of each MAb with the mutant rED3s was assessed by indirect ELISA and the results indicate that all seven MAbs recognize overlapping epitopes with residues K305 and P384 critical for binding. These residues are conserved among DENV-2 strains and cluster together on the upper lateral face of ED3. A linear relationship was observed between relative occupancy of ED3 on the virion by MAb and neutralization of the majority of virus infectivity (∼90%) for all seven MAbs. Depending on the MAb, it is predicted that between 10% and 50% relative occupancy of ED3 on the virion is necessary for virus neutralization and for all seven MAbs occupancy levels approaching saturation were required for 100% neutralization of virus infectivity. Overall, the conserved antigenic site recognized by all seven MAbs is likely to be a dominant DENV-2 type-specific, neutralization determinant
    corecore