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Introduction: As the SARS-CoV-2 pandemic continues to evolve, we face new

variants of concern with a concurrent decline in vaccine booster uptake. We

aimed to evaluate the difference in immunity gained from the original SARS-

CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during

pregnancy against recent variants of concern.

Study Design: This is a retrospective analysis of previously collected samples

from 192 patients who delivered between February 2021 and August 2021.

Participants were categorized as 1) COVID vaccine: mRNA vaccine in

pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was

neutralizing capacity against wild-type, Delta, and Omicron-B1 between

cohorts. Secondary outcomes include a comparison of cord-blood ID50 as

well as the efficiency of vertical transfer, measured by cord-blood:maternal

blood ID50 for each variant.

Results: Pregnant women with COVID-19 vaccination had a greater spike in IgG

titers compared to both those with COVID-19 disease exposure and controls.

Both COVID exposure and vaccination resulted in immunity against Delta, but

only COVID vaccination resulted in significantly greater Omicron ID-50 versus

controls. The neutralizing capacity of serum from newborns was lower than that

of their mothers, with COVID-vaccination demonstrating higher cord-blood

ID50 vs wildtype and Delta variants compared to control or COVID-exposed,

but neither COVID-exposure nor vaccination demonstrated significantly higher

Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33,

p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood
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ID50 with COVID vaccination compared to COVID-19 exposure for wild-type

and Delta respectively. In pair-wise comparison, vertical transfer of neutralization

capacity (cord-blood:maternal blood ID50) was greatest for wild-type and

progressively reduced for Delta and Omicron ID50.

Conclusion: Pregnant patients with either an initial mRNA vaccination series or

COVID-exposure demonstrated reduced immunity against newer variants

compared to wild-type as has been reported for non-pregnant individuals;

however, the COVID-vaccination series afforded greater cross-variant

immunity to pregnant women, specifically against Omicron, than COVID-

disease. Vertical transfer of immunity is greater in those with COVID

vaccination vs COVID disease exposure but is reduced with progressive

variants. Our results reinforce the importance of bivalent booster vaccination

in pregnancy for both maternal and infant protection and also provide a rationale

for receiving updated vaccines as they become available.
KEYWORDS

COVID-19, COVID vaccine, SARS-CoV-2, pregnancy, variants of concern, maternal
immunity, neonatal immunity
Introduction

The COVID-19 pandemic continues to impact global health,

including in the United States, and has a disproportionate effect on

pregnant women and children. Pregnant women have been at higher

risk for severemorbidity andmortality fromCOVID-19 (1–3) (CDC);

pregnancies with COVID face an increased rate of pregnancy

complications, including preeclampsia, preterm birth, and stillbirth

(4). In addition to the neonatal impact of maternal COVID-19 as a

result of prematurity (5), COVID-19 infection has a significant effect

onpediatric health. Exposure risk in infants is due tocontactwithother

family members, which is primarily their mother. Early infant

immunity is dependent on passively acquired immunity through

placental transfer/breastmilk following maternal vaccination or

exposure. Even in the setting of infection of more recent variants of

concern (Omicron), there remains an increased rate of adverse

maternal and neonatal outcomes in the setting of maternal COVID

disease, although the severity was progressively attenuated with

vaccination and booster vaccination (6). Despite these documented

benefits of vaccination, and booster dosing, as of July 2023,

approximately 75% of pregnant individuals nationally had

completed the primary COVID vaccine series, but only 14% had

received the updated bivalent booster dose (7). This is consistent with

general trends in the non-pregnant adult population. A recent study

found that 15-17% of individuals < 45 years old have received the

bivalent booster, and~20%donot plan to get the bivalent booster at all

(8). Given the poor uptake of the bivalent booster, we aimed to

compare the neutralization capacity of immune serum against wild-

type, Delta, and Omicron variants in those who had received the

original vaccine series or hadahistoryof COVID-disease. Secondarily,

we also aimed to identify how maternal immunity and time from

exposure were associated with placental transfer and infant (cord-
02
blood) immunity. Performing these cross-reactivity assessments on

samples collected during a phase of the pandemic when immunity

could be clearly attributed to COVID-exposure involving few viral

lineages versus the monovalent vaccines can reveal qualitative

differences in the resulting immunity.
Materials and methods

This is a secondary analysis of samples collected for a previously

published study on the impact of COVID-19 disease and

vaccination on the maternal-fetal unit (9). Of the 306 participants

in that study, there were 192 samples available for additional

analyses. As previously described, these were patients enrolled in

an ongoing delivery biorepository, and the study involved the

collection of maternal and cord-blood at the time of delivery (9,

10). The objective was to compare maternal and neonatal (cord-)

blood for their neutralizing capacity against Omicron and other

SARS-CoV-2 variants in study participants who had received the

original COVID-19 mRNA vaccine or had a recent history of

COVID-19 disease. All those in the vaccine category had received

both doses of either the Pfizer or Moderna vaccines, although the

exact vaccine type was not recorded. None of these participants had

received the newly available bivalent booster yet, thus allowing us to

definitively determine cross-reactivity with variants of concern.
Cohort classification

Participants were binned into the following groups: 1) COVID-

19 vaccination without history of COVID-19 disease, 2) COVID-

exposure: history of COVID-19 in the pregnancy or seropositive
frontiersin.org
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based on SARS-CoV-2 nucleocapsid IgG titers (10), and 3) control:

no history of COVID vaccination, or COVID disease (confirmed

both by history and seronegative for SARS-CoV-2 nucleocapsid).
Data collection

Electronic medical records were reviewed for demographic,

medical, and obstetric history, date of first positive SARS-CoV-2

PCR test, date of delivery, antenatal complications, and delivery

outcomes. Standard of care at our institution includes a universal

SARS-CoV-2 PCR test on admission and a neonatal SARS-CoV-2

PCR test if the mother had a positive diagnosis on admission

for delivery.
Serology

For assessing antibody specificity, a multiplex testing platform

(MesoScale Diagnostics, Rockville, MD) was employed: antigens

were manufactured in a mammalian expression system (Expi 293 F)

are printed onto 10-plex plates. The antigens used were: HA-trimer

from Influenza A (Hong Kong H3), spike (soluble ectodomain with

T4 trimerization domain) trimers from SARS-CoV-2, SARS-CoV-

1, MERS-CoV, and the betacoronaviruses HKU-1 and OC43, as

well as the spike N-terminal domain (NTD, Q14-L303 of the SARS-

CoV-2 spike sequence), receptor binding domain (RBD, R319-F541

of the SARS-CoV-2 spike sequence), and nucleocapsid protein (N;

full length) for SARS-CoV-2, and bovine serum albumin (BSA, as

negative control). Assays were performed following the

manufacturer’s instructions. In brief, plates were blocked using

Blocker A Solution and incubated at room temperature (RT) for 1h

on a plate shaker at 700 rpm. The plates were washed three times

with 1x MSDWash Buffer. Sera were diluted to 1:1000 with Diluent

100. Positive samples (pooled human serum from COVID-19

patients) and negative samples (pooled pre-pandemic human

serum) were used as controls. Plates were sealed and incubated at

RT for 2h on a plate shaker at 700 rpm, then washed three times

with 1x MSD Wash Buffer. The detection antibody, SULFO-TAG

anti-human IgG or anti-human IgM antibody was diluted to 2 µg/

ml in Diluent 100 (MSD), added to the wells, and incubated at RT

for 1h on a plate shaker 800rpm. After washing, MSD GOLD Read

Buffer B was added to each well and the plates were read

immediately on the MESO QuickPlex SQ 120 (MSD).
Neutralization capacity

This assay has been described previously (11). The Spike

expression plasmid sequences for SARS-CoV-2 were codon

optimized and modified to remove the last 18 amino acids of the

cytoplasmic tail, which improves S incorporation into

pseudovirions (PSV). PSV were produced by cotransfection of

HEK293T/17 cells with either a SARS-CoV-2 S plasmid based on

the Wuhan-Hu-1 genome sequence (GenBank accession number
Frontiers in Immunology 03
MN908947.3) and an HIV-1 pNL4-3 luciferase reporter plasmid

(pNL4-3.Luc.R-E-, NIH HIV Reagent Program, catalog number

3418). S expression plasmids for SARS-CoV-2 VOCs were similarly

codon optimized and modified and included the following

mutations: B.1.617.2/Delta (E156G, D614G, P681R, T19R, T478K,

L452R, D950N, 157-158 del), B.1.1.529/Omicron (A67V, 69-70 del,

T95I, G142D, 143-145 del, N211I, 212 del, G339D, S371L, S373P,

S375F, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y,

Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y,

N856K, N969K, Q954H, L981F). Infectivity and neutralizing titers

were determined using ACE2-expressing HEK293 target cells

(Integral Molecular). Test sera were serially diluted, mixed with

an equal volume of diluted PSV, and plates were incubated for 1 h at

37°C. Target cells were added to each well (40,000 cells per well),

and plates were incubated for an additional 48 h. Relative light units

were measured with the Synergy Neo2 Hybrid Multi-Mode

Microplate Reader (Agilent BioTek) using the Bright-Glo

Luciferase Assay System (Promega). Neutralizationdose–response

curves were fitted by nonlinear regression using GraphPad Prism,

and titers are reported as the reciprocal of the serum dilution

necessary to achieve 50% inhibit ion of SARS-CoV-2

infectivity (ID50).
Outcomes

The primary outcome was neutralizing capacity, measured by

the reciprocal of the serum dilution necessary to achieve 50%

inhibition of SARS-CoV-2 infectivity (ID50) against wild-type,

Delta, and Omicron-B1 between cohorts. Secondary outcomes

include a comparison of cord-blood ID50 as well as efficiency of

vertical transfer, measured by cord-blood:maternal blood ID50 for

each variant, correlation between titers and variant-specific

immunity, and factors associated with maternal ID50.
Statistical plan

Statistical analysis was conducted using SPSS v. 26.0 (Chicago,

SPSS, Inc) and R. Regarding baseline characteristics- categorical

comparisons were done with chi-square analysis or Fisher’s exact

test as appropriate and continuous variables were compared with

one-way ANOVA. Serological titers and ID-50 values were log-

transformed, and compared with ANCOVA, unadjusted, and

adjusted taking into consideration potential covariates that were

identified to be different between groups at p<0.05. Correlation

between latency, titers, and ID50 was assessed with bivariate

correlation and reported with Pearson correlation coefficient (r).

Comparisons of paired maternal and cord-blood serology were

carried out using linear regression to determine the slope,

correlation coefficient, and R (2). P<0.05 is considered significant

for all analyses. Pair-wise comparison of the difference in variant-

specific immunity was done with the Wilcox Rank Sum test. Figures

were generated using the SPSS, and stats, ggplot2, and corrplot

packages in R.
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Results

Cohort description

There were 192 participants who had samples available for

additional analyses. They delivered between February 2021-August

2021. This time period includes the Delta wave, which began in

India in late 2020, emerged in the United States in April 2021, and

dominated in the summer of 2021. This time period does not

include the Omicron variant wave, which was first identified in

South Africa in November 2021, and quickly spread around the

world. Analyzing this sample set provides insights into how future

variants from lineages divergent from the vaccine-included

sequences will perform and make the results of this study

relevant. There were 88 in the control group, 57 in the COVID-

exposed group, and 47 in the COVID-vaccine group. Of 57 in the

COVID-exposed group, there were 28 participants who did not

have a documented COVID-19 infection but were seropositive.

Maternal-cord-blood dyads at delivery were available for 114

participants, N=54 control, N=32 COVID-exposed, and N=28

COVID- vaccine. There were some significant baseline differences

between groups, including race, maternal age and maternal BMI,

and time from exposure (Table 1). All of those in the vaccine group

had received both doses of an mRNA-based COVID vaccine and

were >7 days from the first vaccine dose. Of those in the COVID-

exposed group, only 19 had a specific date recorded for their

COVID-19 infection and the majority of these were >7 days from

delivery (Table 1).
Frontiers in Immunology 04
SARS CoV-2 serological titers

COVID-19 vaccination was associated with higher mean full-

length spike IgG titers compared to those with COVID-19 disease

and controls. Those with COVID-19 exposure had lower titers

compared to the vaccine group. Participants with COVID exposure

had, as expected, higher nucleocapsid titers than controls and

COVID vaccine recipients (Figure 1).
Neutralizing capacity (ID50) against
variants of concern

Those with COVID-19 mRNA vaccination had higher ID50

against wildtype and Delta virus, and to a lesser degree, Omicron,

compared to controls in unadjusted and adjusted analyses. In

contrast, those with COVID-exposure did not have any improved

immunity against Omicron compared to controls (Figure 2). In

pairwise comparisons for those who had received the COVID

vaccine, there was progressively reduced ID-50 from wild-type

(5.74 ± 1.45) to delta (4.30 ± 0.92) to Omicron (3.83 ± 0.60)

(p<0.001 for all comparisons). For those with COVID exposure,

there was progressively reduced ID-50 with Delta (3.91 ± 0.75) and

Omicron (3.76 ± 0.60) compared to wild-type (4.7 ± 1.19) (p<0.001,

p<001), and with Omicron compared to Delta (p=0.02).

Among those with COVID-19 exposure or vaccination, time

from exposure (days) was negatively correlated with neutralizing

capacity for both wild-type (r=-0.35, p=0.005) and Delta (-0.31,
TABLE 1 Characteristics of cohort.

Characteristics COVID-Vaccine
N=47

COVID-Exposed
N=57

Control
N=88

p-value

Race

White 33 (70.2%) 8 (14.0%) 34 (38.6%)

<0.001

Black 4 (8.5%) 30 (52.6%) 36 (40.9%)

Asian 6 (12.8%) 3 (5.3%) 8 (9.1%)

Hispanic 0 (0%) 13 (22.8%) 7 (8.0%)

Other 4 (8.5%) 3 (5.3%) 3 (3.4%)

Prior full-term delivery 23 (48.9%) 31 (54.4%) 53 (60.2%) 0.44

Prior preterm birth 24 (12.5%) 9 (15.8%) 12 (13.6%) 0.32

Twin gestation 2 (4.3%) 1 (1.8%) 2 (2.3%) 0.33

Maternal age 34.3 ± 4.4 29.0 ± 5.9 31.2 ± 5.5 <0.001

Maternal BMI 30.5 ± 6.3 35.9 ± 7.2 34.5 ± 6.9 <0.001

Gestational age at delivery (weeks) 38.4 ± 1.5 38.6 ± 1.2 38.5 ± 1.3 0.74

Time from vaccine or COVID disease (days) 85.5 ± 44.3 (N=47) 91.6 ± 73.8 (N=19) Not applicable 0.68

Delivery > 7 days from vaccine or COVID disease 47 (100%)
(N=47)

16 (84.2%)
(N=19)

0.006
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p=0.01). Maternal full-length spike IgG titers were positively

correlated with neutralizing capacity against wild-type (r=0.74,

p<0.001), Delta (r=0.56, p<0.001) and Omicron-B1 (r=0.30,

p=0.003) variants (Figure 3). The correlation matrices

demonstrated the distinct relationships between antibody titers

and neutralizing activities in the COVID vaccine vs. COVID

disease cohorts: the COVID vaccine group showed a strong

correlation between maternal spike titers and wild-type and Delta

ID50 in maternal and cord-blood. Moreover, a weak correlation

between maternal Omicron ID50 and maternal spike titers and

wild-type and Delta neutralization capacity was observed

(Figure 3A). In contrast, strong correlations in the COVID

exposure cohort were only seen between maternal spike titers vs.

wild-type and Delta neutralizing capacity. This correlation for

antibody titer and neutralizing capacity in cord blood was strong

for wildtype, but already diminished for Delta. Due to a lack of

correlation with Omicron ID50, this analysis was removed from the

correlation matrix in Figure 3B. In summary, the COVID vaccine
Frontiers in Immunology 05
cohort reveals more cross-reactivity against variant strains,

including even some activity against Omicron. The latter was not

observed in the COVID exposure cohort.

In a multivariable logistic regression analysis that takes into

consideration race, age, BMI, latency, along with cohort sub-group,

COVID-vaccination was positively associated with wild-type (B=1.3

(0.4 – 2.1), p=0.005), Delta (B=0.5 (0.1-1.1), p=0.047), and Omicron

(B=0.4 (0.1-0.7), p=0.01) ID50 compared to COVID-exposed.

These results are limited to those with time from exposure data

available (Table 1).
Vertical transfer of immunity

There was a positive association between maternal and cord-

blood titers for both COVID vaccine and COVID-19-exposed

cohorts (Figure 3). Although overall neutralizing capacity

decreased with increased time from exposure, the efficiency of
A B

D E F

C

FIGURE 2

Mean neutralization ID50 (log) against wild-type, Delta, and Omicron B-1 variants in pregnant patients who had COVID-19 (N=57), COVID-vaccine
(N=47), or neither (control, N=88). Error bars indicate a 95% confidence interval. Comparison of mean ID50 (log) by cohort subgroup against (A)
wild-type, (B) Delta, and (C) Omicron B1 variants in maternal blood and (D) wild-type, (E) Delta, and (F) Omicron B1 variants in cord-blood.
Comparisons adjusted for age, race, BMI, and, between COVID-exposed and vaccine cohorts, time from infection. The green line indicates a
comparison to COVID-vaccine, the red line indicates a comparison to COVID-disease. * p<0.05 *** p<0.001.
FIGURE 1

Comparison of SARS-CoV-2 antibody epitopes in control (N=88), COVID exposed (N=57), and COVID-vaccinated subjects(N=47). Spike, full-length
spike protein; RBD, spike receptor binding domain; NTD, N-terminal domain; Nucleoprotein, nucleocapsid.
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transfer of neutralizing capacity increased with time from exposure

(Figure 4). In a linear regression model, both time from exposure and

COVID vaccination vs disease were positively associated with

increased vertical transfer efficiency for the wild-type and the Delta

variant. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24,

p=0.05) increase in cord-blood:maternal neutralizing capacity with

COVID vaccination compared to COVID-19 exposure for wild-type

and Delta neutralizing capacity respectively. Finally, in comparing the

efficiency of vertical transfer of immunity to variants, theWilcox rank

sum comparison found that there was reduced efficiency from wild-

type toDelta toOmicron (p<0.001); and among the COVID-exposure

cohort reduced efficiency from wild-type to Delta variants (Omicron

not evaluated due to lack of significant immunity against Omicron in

the COVID-exposed cohort) (Figure 5).
Discussion

Our results add the following three key points to the current

body of knowledge regarding COVID vaccination in pregnancy: 1)

Immunity induced by the original mRNA-based COVID vaccine is

reduced against newer variants compared to the wild-type virus;
Frontiers in Immunology 06
this trend was even more marked when immunity was induced by

infection rather than vaccination; 2) an initial COVID-vaccination

series afforded greater cross-variant immunity, specifically against

Omicron, than COVID-disease; 3) vertical transfer of immunity to

newborns is not equivalent across variants. This suggests that the

types of antibodies that provide cross-variant maternal immunity

are limited in their transplacental passage. For example, IgM shows

very limited placental transfer, but can vary by inflammatory status

(12). While IgG antibodies as a whole have a high placental transfer

efficiency, there is variable transfer efficiency within IgG isotypes,

and this may also explain the variation in variant-specific immunity

(13). Our results highlight the importance of maintaining immunity

through vaccinations against SARS-CoV-2, the potential need for

updating the vaccine as new variants develop, and the limitations of

neonatal-acquired immunity.
Results in the context of what is known

The maternal and neonatal benefits of COVID vaccination are

well documented in the form of both reduced maternal morbidity

and mortality as well as reduced infant COVID-related morbidity
A B

FIGURE 4

Relationship between latency and maternal-blood:cord-blood transfer of neutralization capacity against wild-type and Delta variants. COVID
exposure data points and regression line represented in red. COVID vaccine data points and regression line represented in green.
A B

FIGURE 3

Correlation between antibody titer and neutralization capacity in maternal and cord-blood in (A) COVID vaccine cohort and (B) COVID exposed
cohort. The color and size of the circles within the correlation matrix are corresponding to pairwise Pearson correlation coefficients. The factors in
the individual matrices are ordered according to the degree of association between variables. Due to a lack of correlation with Omicron ID50, this
was removed from the correlation matrix in B.
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and mortality in the setting of initial vaccination series and earlier

variants (14, 15). A recent study on patients boosted in the third

trimester receiving the bivalent booster demonstrated increased

Omicron spike titers compared to primary vaccination (16) but did

not compare Omicron neutralizing capacity with prior COVID

exposure. An earlier study evaluated the efficacy of COVID

vaccination against wild-type and Alpha and Beta variants and

found reduced responses against the Alpha and Beta variants, but

did not include a comparison to control or disease exposure (17),

and provided no data for the Delta or Omicron variants.

Our work adds to the current body of knowledge by evaluating

how well an initial vaccination series, or early COVID exposure,

protects against current variants of concern. Due to the size and

heterogeneity of our cohort, we were able to study individuals with a

range of time from infection and adjust for differences in baseline

characteristics. Consistent with earlier studies comparing the

COVID vaccine and disease exposure and wild-type immunity

(18), we found vaccination afforded improved immunity,

although attenuated, against new variants as well. Interestingly,

we found reduced neonatal immunity against progressive variants,

reflecting the limitations of passively acquired cross-variant

immunity. This highlights the need to promote the use of variant-

specific booster immunizations in pregnancy if not just for maternal

benefit, but also for neonatal protection.
Implications for research

Our results have several important implications for research.

First, given the continued, global circulation of SARS-CoV-2
Frontiers in Immunology 07
exposure, comparing vaccine-induced immunity to disease-

induced immunity and the impact of vaccination and/or exposure

on the immunological profile hold tremendous value. Second, our

results highlight the limited utility of serological titers alone when

analyzing immunity against newer variants of concern. Future

research on SARS CoV-2 immunity should focus on neutralizing

the capacity of immune serum and not just serological titers. For

example, COVID-19 infections resulted in broad antibody response

to SARS-CoV-2 spike protein and nucleocapsid, but, unlike

vaccination, resulted in negligible Omicron neutralizing activity in

both maternal and cord-blood sera. Third, we noted significantly

higher neutralizing capacity against wild-type in cord-blood

compared to maternal blood. The efficiency of vertical transfer of

immunity is an important area for future research to optimize

maternal immunization with the potential for neonatal benefit. This

transfer, however, did not translate into equivalent protection

against the Omicron variant, sub highlighting the distinct nature

of the passive immunity acquired by neonates and the need for

further research into whether, for example, the lack of IgM, or

preference of transfer of specific IgG isotypes results in the

difference in neutralizing capacity between maternal and cord-

blood. This has important implications for the degree of

functional neonatal immunity afforded by maternal vaccination,

and optimal time periods of maternal vaccination for infant

immunity. Fourth, the observed differences in the persistence of

neutralizing antibody titers induced by vaccination vs SARS-CoV-2

exposure in maternal sera and the corresponding neutralizing

activity in cord-blood strongly support the recommendation to

vaccinate pregnant patients. Finally, the observation that 28% of

control subjects were seropositive already by mid-2021 confirms the
FIGURE 5

Comparison of transfer efficiency of immunity against variants of concern in those with COVID-vaccine (N=47) and COVID exposure (N=28) with
maternal/cord-blood pair available. Transfer efficiency was reported as the ratio of cord-blood:maternal-blood ID50 for each variant. Comparison
completed with Wilcox rank-sum test, *** indicates p<0.001. For those with COVID-disease, Omicron is not included due to a lack of increased
neutralization capacity compared to controls.
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increasing endemicity of SARS-CoV-2 infections and the

importance of taking existing immunity into consideration in

future studies.
Implications for clinical care

Our results have a number of important implications for

clinical care. First and foremost, we highlight the importance of

bivalent boosters during pregnancy; an initial vaccine series

resulted in reduced maternal and no neonatal functional

immunity against the recent variant of concern, i.e., Omicron.

Poor bivalent booster uptake may be related to a false sense of

security from the initial vaccine course or prior infection, and this

data provides evidence to counter those assumptions. Second, our

findings regarding the benefit of vaccination and latency in the

vertical transfer of immunity, and the limited acquired cross-

variant immunity, have important implications for the timing of

maternal booster doses in pregnancy for the purpose of inducing

infant immunity.
Conclusion

In pregnant patients, an initial COVID mRNA vaccination

series provides greater cross-variant protection and improved

vertical transfer of immunity compared to COVID-exposure in a

similar time period, however even with vaccination, there is reduced

maternal immunity and vertical transfer of immunity against the

recent variant of concern, Omicron. This highlights the importance

of updated booster vaccination in pregnancy for both maternal

immunity and acquired neonatal immunity and the need for further

research into the specific antibodies that contribute to cross-variant

immunity. The identification of conserved epitopes that lead to

cross-strain reactivity and protection will be crucial for future

vaccine design.
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