52 research outputs found

    Sedimentological imprints of environmental variability at the Balkan Peninsula on the sediment sequence of Lake Ohrid (Macedonia, Albania) between the Mid Pleistocene Transition and present days: the ICDP SCOPSCO project

    Get PDF
    The UNESCO World Heritage site of Lake Ohrid in the Balkans is thought to be the oldest, continuously existing lake in Europe. In order to unravel the geological and evolutionary history of the lake, a deep drilling campaign was conducted in spring 2013 under the umbrella of the ICDP SCOPSCO project. At the coring site “DEEP” in central parts of the lake, more than 1,500 m of sediments were recovered down to a penetration depth of 569 m blf. This sediment sequence is assumed to be more than 1.2 Ma old and likely covers the entire lacustrine deposits of the Lake Ohrid Basin

    Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present

    Get PDF
    Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8

    Holocene hydrological variability of Lake Ladoga, northwest Russia, as inferred from diatom oxygen isotopes

    Get PDF
    This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely

    Northern Eurasian large lakes history: sediment records obtained in the frame of Russian-German research project PLOT

    Get PDF
    Russian-German project PLOT (Paleolimnological Transect) aims at investigating the regional responses of the quaternary climate and environment on external forcing and feedback mechanisms along a more than 6000 km long longitudinal transect crossing Northern Eurasia. The well-dated record from Lake El´gygytgyn used as reference site for comparison the local climatic and environmental histories. Seismic surveys and sediment coring up to 54 m below lake floor performed in the frame of the project on Ladoga Lake (North-West of Russia; 2013), Lake Bolshoye Shchuchye (Polar Ural; 2016), Lake Levinson-Lessing and Lake Taymyr (Taymyr Peninsula; 2016-2017), Lake Emanda (Verkhoyansk Range; 2017). Fieldwork at Polar Ural and Taymyr Peninsula was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. Here, we present the major results of the project obtained so far

    Relevance of field observations as boundary conditions for understanding ice-sheet-ocean interactions

    Get PDF
    The direct contact of warm ocean water with the front and base of ice shelves is the main driver for accelerated mass loss of the Antarctic ice sheet. We present a compilation of observations from various projects and methodological approaches applied over the last decade along the Dronning Maud Land coast and highlight their importance for understanding the ice-ocean interactions. With a focus on the Ekström ice shelf, these include spatially continuous seismic observations in combination with airborne gravity inversion to yield sub-shelf bathymetry and geomorphological evidence of past ice-flow activity; ice-dynamic numerical modelling to investigate the role of seafloor/subglacial substrate characteristics to enhance or reduce ice-sheet extent and advance/retreat rates; sub-shelf CTD measurements to determine ocean properties driving basal melting; satellitebased remote sensing to determine ice-shelf height changes and spatially-distributed basal melting; and point measurements of basal melt with surface-based phase-sensitive radar to determine ocean-driven melt and validate remote-sensing products. As the Dronning Maud Land coast plays a critical role in preconditioning the water mass of the coastal current before it enters the Filcher ice-shelf cavity, we argue that a coordinated inter- and transdisciplinary observational network is required to facilitate monitoring a potential ice-sheet mass loss in this part of Antarctica
    corecore