74 research outputs found

    On the Linearization of the Painleve' III-VI Equations and Reductions of the Three-Wave Resonant System

    Full text link
    We extend similarity reductions of the coupled (2+1)-dimensional three-wave resonant interaction system to its Lax pair. Thus we obtain new 3x3 matrix Fuchs--Garnier pairs for the third and fifth Painleve' equations, together with the previously known Fuchs--Garnier pair for the fourth and sixth Painleve' equations. These Fuchs--Garnier pairs have an important feature: they are linear with respect to the spectral parameter. Therefore we can apply the Laplace transform to study these pairs. In this way we found reductions of all pairs to the standard 2x2 matrix Fuchs--Garnier pairs obtained by M. Jimbo and T. Miwa. As an application of the 3x3 matrix pairs, we found an integral auto-transformation for the standard Fuchs--Garnier pair for the fifth Painleve' equation. It generates an Okamoto-like B\"acklund transformation for the fifth Painleve' equation. Another application is an integral transformation relating two different 2x2 matrix Fuchs--Garnier pairs for the third Painleve' equation.Comment: Typos are corrected, journal and DOI references are adde

    On a q-difference Painlev\'e III equation: II. Rational solutions

    Full text link
    Rational solutions for a qq-difference analogue of the Painlev\'e III equation are considered. A Determinant formula of Jacobi-Trudi type for the solutions is constructed.Comment: Archive version is already official. Published by JNMP at http://www.sm.luth.se/math/JNMP

    On general representation of the meromorphic solutions of higher analogues of the second painleve equation

    Get PDF
    „On general representation of the meromorphic solutions of higher analogues of the second painleve equation" Mathematical Modelling Analysis, 2(1), p.61-65 First Published Online: 14 Oct 201

    Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painlev\'{e} Equation. I

    Full text link
    The degenerate third Painlev\'{e} equation, u=(u)2uuτ+1τ(8ϵu2+2ab)+b2uu^{\prime \prime} = \frac{(u^{\prime})^{2}}{u} - \frac{u^{\prime}}{\tau} + \frac{1}{\tau}(-8 \epsilon u^{2} + 2ab) + \frac{b^{2}}{u}, where ϵ,bR\epsilon,b \in \mathbb{R}, and aCa \in \mathbb{C}, and the associated tau-function are studied via the Isomonodromy Deformation Method. Connection formulae for asymptotics of the general as τ±0\tau \to \pm 0 and ±i0\pm i0 solution and general regular as τ±\tau \to \pm \infty and ±i\pm i \infty solution are obtained.Comment: 40 pages, LaTeX2

    Rational solutions of the Sasano system of type D5(1)D_5^{(1)}

    Full text link
    We completely classify the rational solutions of the Sasano system of type D5(1).D5^{(1)}. The rational solutions are classified to four classes by the B\"acklund transformation group.Comment: We believe that the result is correct, but is not interestin

    Multivortex Solutions of the Weierstrass Representation

    Full text link
    The connection between the complex Sine and Sinh-Gordon equations on the complex plane associated with a Weierstrass type system and the possibility of construction of several classes of multivortex solutions is discussed in detail. We perform the Painlev\'e test and analyse the possibility of deriving the B\"acklund transformation from the singularity analysis of the complex Sine-Gordon equation. We make use of the analysis using the known relations for the Painlev\'{e} equations to construct explicit formulae in terms of the Umemura polynomials which are τ\tau-functions for rational solutions of the third Painlev\'{e} equation. New classes of multivortex solutions of a Weierstrass system are obtained through the use of this proposed procedure. Some physical applications are mentioned in the area of the vortex Higgs model when the complex Sine-Gordon equation is reduced to coupled Riccati equations.Comment: 27 pages LaTeX2e, 1 encapsulated Postscript figur

    Autoresonance in a Dissipative System

    Full text link
    We study the autoresonant solution of Duffing's equation in the presence of dissipation. This solution is proved to be an attracting set. We evaluate the maximal amplitude of the autoresonant solution and the time of transition from autoresonant growth of the amplitude to the mode of fast oscillations. Analytical results are illustrated by numerical simulations.Comment: 22 pages, 3 figure

    Rational Solutions of the Painleve' VI Equation

    Full text link
    In this paper, we classify all values of the parameters α\alpha, β\beta, γ\gamma and δ\delta of the Painlev\'e VI equation such that there are rational solutions. We give a formula for them up to the birational canonical transformations and the symmetries of the Painlev\'e VI equation.Comment: 13 pages, 1 Postscript figure Typos fixe

    АНАЛИТИЧЕСКИЕ СВОЙСТВА РЕШЕНИЙ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТИПА УРАВНЕНИЙ ПЕНЛЕВЕ

    Get PDF
    The theorem of a general structure of equations in the K2 hierarchy is proved. The order of movable poles of solutions is determined. The resonant polynomials are constructed in explicit form, and the character of their roots is determined.Доказывается теорема об общей структуре уравнений иерархии K2. Определяется порядок подвижных полюсов решений. В явном виде строятся резонансные многочлены, определяется характер их корней

    Hard loss of stability in Painlev\'e-2 equation

    Full text link
    A special asymptotic solution of the Painlev\'e-2 equation with small parameter is studied. This solution has a critical point tt_* corresponding to a bifurcation phenomenon. When t<tt<t_* the constructed solution varies slowly and when t>tt>t_* the solution oscillates very fast. We investigate the transitional layer in detail and obtain a smooth asymptotic solution, using a sequence of scaling and matching procedures
    corecore