91 research outputs found

    Dzyaloshinskii-Moriya interaction and spin re-orientation transition in the frustrated kagome lattice antiferromagnet

    Full text link
    Magnetization, specific heat, and neutron scattering measurements were performed to study a magnetic transition in jarosite, a spin-5/2 kagome lattice antiferromagnet. When a magnetic field is applied perpendicular to the kagome plane, magnetizations in the ordered state show a sudden increase at a critical field H_c, indicative of the transition from antiferromagnetic to ferromagnetic states. This sudden increase arises as the spins on alternate kagome planes rotate 180 degrees to ferromagnetically align the canted moments along the field direction. The canted moment on a single kagome plane is a result of the Dzyaloshinskii-Moriya interaction. For H < H_c, the weak ferromagnetic interlayer coupling forces the spins to align in such an arrangement that the canted components on any two adjacent layers are equal and opposite, yielding a zero net magnetic moment. For H > H_c, the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate, aligning the canted moments along the field direction. Neutron scattering measurements provide the first direct evidence of this 180-degree spin rotation at the transition.Comment: 13 pages, 15 figure

    Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2

    Full text link
    We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law with exponent less than or equal to 1. These results suggest that an unusual spin-liquid state with essentially gapless excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3: Updated version; v4: Published versio

    Magnetic excitations in a new anisotropic Kagom\'{e} antiferromagnet

    Full text link
    The Nd-langasite compound contains planes of magnetic Nd3+ ions on a lattice topologically equivalent to a kagom\'{e} net. The magnetic susceptibility does not reveal any signature of long-range ordering down to 2 K but rather a correlated paramagnetism with significant antiferromagnetic interactions between the Nd and a single-ion anisotropy due to crystal field effect. Inelastic neutron scattering on Nd-langasite powder and single-crystal allowed to probe its very peculiar low temperature dynamical magnetic correlations. They present unusual dispersive features and are broadly localized in wave-vector Q revealing a structure factor associated to characteristics short range-correlations between the magnetic atoms. From comparison with theoretical calculations, these results are interpreted as a possible experimental observation of a spin liquid state in an anisotropic kagom\'{e} antiferromagnet.Comment: to appear in Physica

    Spin chirality on a two-dimensional frustrated lattice

    Full text link
    The collective behavior of interacting magnetic moments can be strongly influenced by the topology of the underlying lattice. In geometrically frustrated spin systems, interesting chiral correlations may develop that are related to the spin arrangement on triangular plaquettes. We report a study of the spin chirality on a two-dimensional geometrically frustrated lattice. Our new chemical synthesis methods allow us to produce large single crystal samples of KFe3(OH)6(SO4)2, an ideal Kagome lattice antiferromagnet. Combined thermodynamic and neutron scattering measurements reveal that the phase transition to the ordered ground-state is unusual. At low temperatures, application of a magnetic field induces a transition between states with different non-trivial spin-textures.Comment: 7 pages, 4 figure

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets

    Full text link
    In the corner-sharing lattice, magnetic frustration causes macroscopic degeneracy in the ground state, which prevents systems from ordering. However, if the ensemble of the degenerate configuration has some global structure, the system can have a symmetry breaking phenomenon and thus posses a finite temperature phase transition. As a typical example of such cases, the magnetic phase transition of the Ising-like Heisenberg antiferromagnetic model on the kagome lattice has been studied. There, a phase transition of the two-dimensional ferromagnetic Ising universality class occurs accompanying with the uniform spontaneous magnetization. Because of the macroscopic degeneracy in the ordered phase, the system is found to show an entropy-driven ordering process, which is quantitatively characterized by the number of ``weathervane loop''. We investigate this novel type of slow relaxation in regularly frustrated system.Comment: 4 pages, 6 figure

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
    • …
    corecore