219 research outputs found

    Magnetic Susceptibility of the Kagome Antiferromagnet ZnCu3(OH)6Cl2

    Full text link
    We analyze the experimental data for the magnetic susceptibility of the material ZnCu3(OH)6Cl2 in terms of the Kagome Lattice Heisenberg model (KLHM), discussing possible role of impurity spins, dilution, exchange anisotropy, and both out-of-plane and in-plane Dzyaloshinsky-Moriya (DM) anisotropies, with explicit theoretical calculations using the Numerical Linked Cluster (NLC) method and exact diagonalization (ED). The high-temperature experimental data are well described by the pure Heisenberg model with J=170 K. We show that the sudden upturn in the susceptibility around T=75 K is due to DM interactions. We also observe that at intermediate temperatures, below T=J, our calculated susceptibility for KLHM fits well with a power law T^{-0.25}.Comment: 4 pages, 5 figures, published versio

    The role of surface properties of Thiobacillus Ferrooxidans and minerals in microbial adhesion

    Get PDF
    To explain the selective microbial adhesion of Thiobacillus ferrooxidans on pyrite, zeta potential of both the bacterium cells and the mineral was measured using the electrophoretic light scattering (ELS) technique. Simultaneously, relative hydrophobicity of the cells and the mineral was determined by the liquid-liquid partition (BATH) test and the thin-layer wicking method (TLW), respectively. Heteroaggregation of the cells with the pyrite particles has been evaluated qualitatively from the ELS spectra provided by their mixtures at different pH and interpreted in terms of the Lifshitz-van der Waals and acid-base surface thermodynamics model of microbial adhesio

    Polarized neutron scattering studies of the kagome lattice antiferromagnet KFe3(OH)6(SO4)2

    Full text link
    We report polarized neutron scattering studies of spin-wave excitations and spin fluctuations in the S=5/2 kagome lattice antiferromagnet KFe3(OH)6(SO4)2 (jarosite). Inelastic polarized neutron scattering measurements at 10 K on a single crystal sample reveal two spin gaps, associated with in-plane and out-of-plane excitations. The polarization analysis of quasi-elastic scattering at 67 K shows in-plane spin fluctuations with XY symmetry, consistent with the disappearance of the in-plane gap above the Neel temperature T_N = 65 K. Our results suggest that jarosite is a promising candidate for studying the 2D XY universality class in magnetic systems.Comment: 3 pages, 3 figures, Proceeding to the 7th International Workshop on Polarized Neutrons for Condensed Matter Investigations and 2nd International Symposium of Quantum Beam Science Directorat

    A study of long range order in certain two-dimensional frustrated lattices

    Full text link
    We have studied the Heisenberg antiferromagnets on two-dimensional frustrated lattices, triangular and kagome lattices using linear spin-wave theory. A collinear ground state ordering is possible if one of the three bonds in each triangular plaquette of the lattice becomes weaker or frustrated. We study spiral order in the Heisenberg model along with Dzyaloshinskii-Moriya (DM) interaction and in the presence of a magnetic field. The quantum corrections to the ground state energy and sublattice magnetization are calculated analytically in the case of triangular lattice with nearesr-neighbour interaction. The corrections depend on the DM interaction strength and the magnetic field. We find that the DM interaction stabilizes the long-range order, reducing the effect of quantum fluctuations. Similar conclusions are reached for the kagome lattice. We work out the linear spin-wave theory at first with only nearest-neighbour (nn) terms for the kagome lattice. We find that the nn interaction is not sufficient to remove the effects of low energy fluctuations. The flat branch in the excitation spectrum becomes dispersive on addition of furthet neighbour interactions. The ground state energy and the excitation spectrum have been obtained for various cases.Comment: 18 pages, 9 figure

    Who Are the Russian Oligarchs and How Did They Get Their Money?

    Get PDF

    EU methodology for critical raw materials assessment : policy needs and proposed solutions for incremental improvements

    Get PDF
    Raw materials form the basis of Europe's economy to ensure jobs and competitiveness, and they are essential for maintaining and improving quality of life. Although all raw materials are important, some of them are of more concern than others, thus the list of critical raw materials (CRMs) for the EU, and the underlying European Commission (EC) criticality assessment methodology, are key instruments in the context of the EU raw materials policy. For the next update of the CRMs list in 2017, the EC is considering to apply the overall methodology already used in 2011 and 2014, but with some modifications. Keeping the same methodological approach is a deliberate choice in order to prioritise the comparability with the previous two exercises, effectively monitor trends, and maintain the highest possible policy relevance. As the EC's in-house science service, the Directorate General Joint Research Centre (DG JRC) identified aspects of the EU criticality methodology that could be adapted to better address the needs and expectations of the resulting CRMs list to identify and monitor critical raw materials in the EU. The goal of this paper is to discuss the specific elements of the EC criticality methodology that were adapted by DG JRC, highlight their novelty and/or potential outcomes, and discuss them in the context of criticality assessment methodologies available internationally

    Spin chirality on a two-dimensional frustrated lattice

    Full text link
    The collective behavior of interacting magnetic moments can be strongly influenced by the topology of the underlying lattice. In geometrically frustrated spin systems, interesting chiral correlations may develop that are related to the spin arrangement on triangular plaquettes. We report a study of the spin chirality on a two-dimensional geometrically frustrated lattice. Our new chemical synthesis methods allow us to produce large single crystal samples of KFe3(OH)6(SO4)2, an ideal Kagome lattice antiferromagnet. Combined thermodynamic and neutron scattering measurements reveal that the phase transition to the ordered ground-state is unusual. At low temperatures, application of a magnetic field induces a transition between states with different non-trivial spin-textures.Comment: 7 pages, 4 figure

    Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2

    Full text link
    We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law with exponent less than or equal to 1. These results suggest that an unusual spin-liquid state with essentially gapless excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3: Updated version; v4: Published versio

    Dzyaloshinskii-Moriya interaction and spin re-orientation transition in the frustrated kagome lattice antiferromagnet

    Full text link
    Magnetization, specific heat, and neutron scattering measurements were performed to study a magnetic transition in jarosite, a spin-5/2 kagome lattice antiferromagnet. When a magnetic field is applied perpendicular to the kagome plane, magnetizations in the ordered state show a sudden increase at a critical field H_c, indicative of the transition from antiferromagnetic to ferromagnetic states. This sudden increase arises as the spins on alternate kagome planes rotate 180 degrees to ferromagnetically align the canted moments along the field direction. The canted moment on a single kagome plane is a result of the Dzyaloshinskii-Moriya interaction. For H < H_c, the weak ferromagnetic interlayer coupling forces the spins to align in such an arrangement that the canted components on any two adjacent layers are equal and opposite, yielding a zero net magnetic moment. For H > H_c, the Zeeman energy overcomes the interlayer coupling causing the spins on the alternate layers to rotate, aligning the canted moments along the field direction. Neutron scattering measurements provide the first direct evidence of this 180-degree spin rotation at the transition.Comment: 13 pages, 15 figure
    • …
    corecore