392 research outputs found

    Time lags: insights from the U.S. Long Term Ecological Research Network

    Get PDF
    Ecosystems across the United States are changing in complex ways that are difficult to predict. Coordinated long-term research and analysis are required to assess how these changes will affect a diverse array of ecosystem services. This paper is part of a series that is a product of a synthesis effort of the U.S. National Science Foundation’s Long Term Ecological Research (LTER) network. This effort revealed that each LTER site had at least one compelling scientific case study about “what their site would look like” in 50 or 100 yr. As the site results were prepared, themes emerged, and the case studies were grouped into separate papers along five themes: state change, connectivity, resilience, time lags, and cascading effects and compiled into this special issue. This paper addresses the time lags theme with five examples from diverse biomes including tundra (Arctic), coastal upwelling (California Current Ecosystem), montane forests (Coweeta), and Everglades freshwater and coastal wetlands (Florida Coastal Everglades) LTER sites. Its objective is to demonstrate the importance of different types of time lags, in different kinds of ecosystems, as drivers of ecosystem structure and function and how these can effectively be addressed with long-term studies. The concept that slow, interactive, compounded changes can have dramatic effects on ecosystem structure, function, services, and future scenarios is apparent in many systems, but they are difficult to quantify and predict. The case studies presented here illustrate the expanding scope of thinking about time lags within the LTER network and beyond. Specifically, they examine what variables are best indicators of lagged changes in arctic tundra, how progressive ocean warming can have profound effects on zooplankton and phytoplankton in waters off the California coast, how a series of species changes over many decades can affect Eastern deciduous forests, and how infrequent, extreme cold spells and storms can have enduring effects on fish populations and wetland vegetation along the Southeast coast and the Gulf of Mexico. The case studies highlight the need for a diverse set of LTER (and other research networks) sites to sort out the multiple components of time lag effects in ecosystems

    Forest canopy restoration has indirect effects on litter decomposition and no effect on denitrification

    Get PDF
    Forest restoration has potential to recover degraded ecosystem functions in disturbed environments. Decomposition and denitrification are two critical functions involved in forest nutrient cycling that are often compromised in degraded ecosystems. As forest canopy structure develops following initial plantings, it may indirectly impact ecosystem functions by altering abiotic conditions. It is likely, however, that there are other abiotic factors that affect decomposition and denitrification that are unrelated to forest canopy structure. Here, we aimed to determine whether forest canopy openness, topography, and soil sand content would affect litter decomposition and denitrification by regulating the microclimate, the herbaceous plant layer, soil chemistry, and soil moisture. Research occurred in restored native temperate rainforest patches in two New Zealand cities. Urban forests are an excellent context for measuring impact of canopy restoration on ecosystem properties such as microclimate due to the extreme swings in city conditions (e.g., urban heat island). Decomposition rates were determined using leaf litter bags and denitrification rates through denitrification enzyme activity assays. We used structural equation modeling to quantify the direct and indirect drivers of these ecosystem functions. Results indicated that decomposition rates were positively related to soil moisture, relative humidity, and herbaceous plant cover. Interestingly, forest canopy openness indirectly affected decomposition through counteracting forces, meaning greater canopy openness in young forests permitted dense herbaceous plant growth which enhanced decomposition, while less canopy openness in older forests enhanced humidity levels which increased decomposition. Denitrification was negatively related to soil pH and positively related to soil moisture, but these abiotic factors were unrelated to the forest canopy. Discovering drivers of ecosystem functions can improve approaches to the restoration of degraded ecosystems, especially in disturbed urban areas. Identifying counteracting effects on ecosystem functions could improve management by focusing restoration actions on specific drivers to elicit desired changes. Some ecosystem processes, like denitrification, are not affected by forest canopy restoration or management, but are instead driven by edaphic and landscape factors

    Managing environmental knowledge networks to navigate complexity

    Get PDF
    Environmental knowledge networks (EKNs) link research collaborators in a common purpose to produce data and knowledge to better understand social-ecological phenomena and address environmental challenges. Over recent years, as scientists have grappled with how to produce data and actionable knowledge for conservation and sustainability, more EKNs have been established. Although each network is founded for its own purposes and maintains its own goals and ways of operating, these networks are generally managed by scientists to produce knowledge to advance science and decision making. In this Insight article, we articulate key qualities and benefits of EKNs and shows how EKNs can address grand challenges that cannot be answered by a single team or institution, create a diverse, vibrant culture of science and community of practice, and provide innovative solutions and knowledge to society. We also discuss challenges of EKN governance, and how challenges may vary with a network’s development. Finally, based on a synthesis of structured discussions about key issues in EKN management, we share recommendations and best practices, emphasizing management practices that are inclusive, reflexive, adaptive, and flexible, so that others may benefit from our experience leading EKNs

    Mineralization of ancient carbon in the subsurface of riparian forests

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02021, doi:10.1029/2007JG000482.Microbial activity in saturated, subsurface sediments in riparian forests may be supported by recent photosynthate or ancient (>500 ybp) soil organic carbon (SOC) in buried horizons. Metabolism of ancient SOC may be particularly important in riparian zones, considered denitrification hot spots, because denitrification in the riparian subsurface is often C-limited, because buried horizons intersect deep flow paths, and because low C mineralization rates can support ecosystem-relevant rates of denitrification. Buried horizons are common where alluvial processes (stream migration, overbank flow) have dominated riparian evolution. Our objectives were to determine: (1) the extent to which ancient SOC directly supports subsurface microbial activity; (2) whether different C sources support microbial activity in alluvial versus glaciofluvial riparian zones; and (3) how microbial use of ancient SOC varies with depth. In situ groundwater incubations and 14C dating of dissolved inorganic carbon revealed that ancient SOC mineralization was common, and that it constituted 31–100% of C mineralization 2.6 m deep at one site, at rates sufficient to influence landscape N budgets. Our data failed to reveal consistent spatial patterns of microbially available ancient C. Although mineralized C age increased with depth at one alluvial site, we observed ancient C metabolism 150 cm deep at a glaciofluvial site, suggesting that subsurface microbial activity in riparian zones does not vary systematically between alluvial and glaciofluvial hydrogeologic settings. These findings underscore the relevance of ancient C to contemporary ecosystem processes and the challenge of using mappable surface features to identify subsurface ecosystem characteristics or riparian zone N-sink strength.We are grateful to the Cornell Program in Biogeochemistry for graduate research grants and to the U.S. EPA for a STAR Graduate Fellowship to Noel Gurwick. Support for radiocarbon analyses also came from USDANRICGP grant 99–35102– 8266, NSF cooperative agreement OCE-9807266, and an Andrew W. Mellon Foundation grant to the Institute of Ecosystem Studies. A graduate research grant to N. Gurwick from the Theresa Heinz Scholars for Environmental Research provided salary for Pete Seitz-Rundlett

    Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network

    Get PDF
    Organic matter (OM) dynamics determine how much carbon is stored in ecosystems, a service that modulates climate. We synthesized research from across the US Long-Term Ecological Research (LTER) Network to assemble a conceptual model of OM dynamics that is consistent with inter-disciplinary perspectives and emphasizes vulnerability of OM pools to disturbance. Guided by this conceptual model, we identified unanticipated patterns and long-term trends in processing and transport of OM emerging from terrestrial, freshwater, wetland, and marine ecosystems. Cross-ecosystem synthesis combined with a survey of researchers revealed several themes: 1) strong effects of climate change on OM dynamics, 2) surprising patterns in OM storage and dynamics resulting from coupling with nutrients, 3) characteristic and often complex legacies of land use and disturbance, 4) a significant role of OM transport that is often overlooked in terrestrial ecosystems, and 5) prospects for reducing uncertainty in forecasting OM dynamics by incorporating the chemical composition of OM. Cross-fertilization of perspectives and approaches across LTER sites and other research networks can stimulate the comprehensive understanding required to support large-scale characterizations of OM budgets and the role of ecosystems in regulating global climate

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Ecological homogenization of oil Properties in the American Residential Macrosystem

    Get PDF
    The conversion of native ecosystems to residential ecosystems dominated by lawns has been a prevailing land-use change in the United States over the past 70 years. Similar development patterns and management of residential ecosystems cause many characteristics of residential ecosystems to be more similar to each other across broad continental gradients than that of former native ecosystems. For instance, similar lawn management by irrigation and fertilizer applications has the potential to influence soil carbon (C) and nitrogen (N) pools and processes. We evaluated the mean and variability of total soil C and N stocks, potential net N mineralization and nitrification, soil nitrite (NO2−)/nitrate (NO3−) and ammonium (NH4+) pools, microbial biomass C and N content, microbial respiration, bulk density, soil pH, and moisture content in residential lawns and native ecosystems in six metropolitan areas across a broad climatic gradient in the United States: Baltimore, MD (BAL); Boston, MA (BOS); Los Angeles, CA (LAX); Miami, FL (MIA); Minneapolis–St. Paul, MN (MSP); and Phoenix, AZ (PHX). We observed evidence of higher N cycling in lawn soils, including significant increases in soil NO2−/NO3−, microbial N pools, and potential net nitrification, and significant decreases in NH4+ pools. Self-reported yard fertilizer application in the previous year was linked with increased NO2−/ NO3− content and decreases in total soil N and C content. Self-reported irrigation in the previous year was associated with decreases in potential net mineralization and potential net nitrification and with increases in bulk density and pH. Residential topsoil had higher total soil C than native topsoil, and microbial biomass C was markedly higher in residential topsoil in the two driest cities (LAX and PHX). Coefficients of variation for most biogeochemical metrics were higher in native soils than in residential soils across all cities, suggesting that residential development homogenizes soil properties and processes at the continental scale

    Oxygen uptake and denitrification in soil aggregates

    Get PDF
    A mathematical model of oxygen uptake by bacteria in agricultural soils is presented with the goal of predicting anaerobic regions in which denitrification occurs. In an environment with a plentiful supply of oxygen, microorganisms consume oxygen through normal respiration. When the local oxygen concentration falls below a threshold level, denitrification may take place leading to the release of nitrous oxide, a potent agent for global warming. A two-dimensional model is presented in which one or more circular soil aggregates are located at a distance below the ground-level at which the prevailing oxygen concentration is prescribed. The level of denitrification is estimated by computing the area of any anaerobic cores which may develop in the interior of the aggregates. The oxygen distribution throughout the model soil is calculated first for an aggregated soil for which the ratio of the oxygen diffusivities between an aggregate and its surround is small via an asymptotic analysis. Second, the case of a non-aggregated soil featuring one or more microbial hotspots, for which the diffusion ratio is arbitrary, is examined numerically using the boundary-element method. Calculations with multiple aggregates demonstrate a sheltering effect whereby some aggregates receive less oxygen than their neighbours. In the case of an infinite regular triangular network representing an aggregated soil, it is shown that there is an optimal inter-aggregate spacing which minimises the total anaerobic core area

    Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities.

    Get PDF
    Author Posting. © Ecological Society of America, 2019. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Trammell, T. L. E., Pataki, D. E., Still, C. J., Ehleringer, J. R., Avolio, M. L., Bettez, N., Cavender-Bares, J., Groffman, P. M., Grove, M., Hall, S. J., Heffernan, J., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K. C., O'Neil-Dunne, J., Pearse, W. D., Chowdhury, R. R., Steele, M., & Wheeler, M. M. Climate and lawn management interact to control C4 plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 29(4), (2019): e01884, doi: 10.1002/eap.1884.In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (ÎŽ13C, index of C3/C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant ÎŽ13C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3/C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3/C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.This research was funded by a series of collaborative grants from the U.S. National Science Foundation Macrosystems Biology Program (EF‐1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, 121238320). The authors thank La'Shaye Ervin, William Borrowman, Moumita Kundu, and Barbara Uhl for field and laboratory assistance

    A Multi-City Comparison of Front and Backyard Differences in Plant Species Diversity and Nitrogen Cycling in Residential landscapes

    Get PDF
    We hypothesize that lower public visibility of residential backyards reduces households’ desire for social conformity, which alters residential land management and produces differences in ecological composition and function between front and backyards. Using lawn vegetation plots (7 cities) and soil cores (6 cities), we examine plant species richness and evenness and nitrogen cycling of lawns in Boston, Baltimore, Miami, Minneapolis-St. Paul, Phoenix, Los Angeles (LA), and Salt Lake City (SLC). Seven soil nitrogen measures were compared because different irrigation and fertilization practices may vary between front and backyards, which may alter nitrogen cycling in soils. In addition to lawn-only measurements, we collected and analyzed plant species richness for entire yards—cultivated (intentionally planted) and spontaneous (self-regenerating)—for front and backyards in just two cities: LA and SLC. Lawn plant species and soils were not different between front and backyards in our multi-city comparisons. However, entire-yard plant analyses in LA and SLC revealed that frontyards had significantly fewer species than backyards for both cultivated and spontaneous species. These results suggest that there is a need for a more rich and social-ecologically nuanced understanding of potential residential, household behaviors and their ecological consequences
    • 

    corecore