248 research outputs found
Soil O2 controls denitrification rates and N2O yield in a riparian wetland
[1] Wetland soil oxygen (O2) is rarely measured, which limits our understanding of a key regulator of nitrogen loss through denitrification. We asked: (1) How does soil [O2] vary in riparian wetlands? (2) How does this [O2] variation affect denitrification rates and end products? and (3) How does [O2] variation and previous exposure to O2affect trace gas fluxes? We collected a continuous seven-month record of [O2] dynamics in a âwetâ and âdryâ riparian zone. In April 2009, soil [O2] ranged from 0 to 13% and consistently increased with increasing distance from the stream. [O2] gradually declined in all sensors until all sensors went anoxic in early September 2009. In mid-fall, a dropping water table increased soil [O2] to 15â20% within a 2â3 day period. We measured denitrification using the Nitrogen-Free Air Recirculation Method (N-FARM), a direct measurement of N2 production against a helium background. Denitrification rates were significantly higher in the wetter areas, which correlated to lower O2 conditions. Denitrification rates in the drier areas correlated with [O2] in the early spring and summer, but significantly decreased in late summer despite decreasing O2 concentrations. Increasing [O2] significantly increased core N2O production, and therefore may be an important control on nitrous oxide yield. Field N2O fluxes, however, were highly variable, ranging from 0 to 800 ug N mâ2 hrâ1 with no differences between the wet and dry sites. Future research should focus on understanding the biotic and abiotic controls on O2 dynamics, and O2 dynamics should be included in models of soil N cycling and trace gas fluxes
Effects of Calcium Treatment on Forest Floor Organic Matter Composition Along an Elevation Gradient
Calcium amendment is a restorative option for nutrient-depleted, acidic soils in the forests of the northeastern United States. We studied the effects of watershed-scale wollastonite (CaSiO3) application on the structural composition of soil organic matter (SOM) and hot-water extractable organic matter (HWEOM) at the Hubbard Brook Experiment Forest in New Hampshire 7-9 years after treatment, along an elevation gradient. Soils in the high-elevation spruce/fir/birch (SFB) zone contained significantly greater amounts of HWEOM compared to lower elevation hardwood soils, likely due to differences in litter quality and slower decomposition rates in colder soils at higher elevation. The only significant difference in hot-water extractable organic carbon (HWEOC) concentration between reference and calcium-treated watersheds was in Oie horizons of the SFB zone, which also exhibited the greatest degree of soil chemical change after treatment. The 13C nuclear magnetic resonance (NMR) spectra showed no significant patterns in O-alkyl C abundance for either soil or HWEOM along the elevation gradient, suggesting that there were no elevation-related patterns in carbohydrate concentration. The general absence of long-term effects in this study suggests that effects of Ca amendment at this dosage on the composition of soil organic matter were small or short-lived
Recommended from our members
The Eco-Techno Spectrum: Exploring Knowledge Systems\u27 Challenges in Green Infrastructure Management
Infrastructure crises are not only technical problems for engineers to solveâthey also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrumâor âeco-techno spectrumââas a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis âfixes.â Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognizeâand better plan forâgaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms
Symptoms of Nitrogen Saturation in a Riparian Wetland
Riparian forests are in a unique position in the landscape since they form a transition between uplands and aquatic systems. These ecosystems may be highly susceptible to nitrogen (N) saturation since they may be subject to high inputs of N from upland areas. We measured potential net N mineralization and nitrification, soil inorganic N levels, microbial biomass carbon (C) and N content, and the N content of litter as indicators of N saturation in two riparian zones on the eastern and western sides of a stream. The sites had similar soils, vegetation, and hydrology, but differing upland land use. The eastern or enriched site was downgradient of a dense residential housing development (built in the 1950s) that produced high groundwater nitrate (NO3â) concentrations. The western or control site had an undeveloped upland. Our objectives were (1) to evaluate if groundwater NO3â loading had induced changes in surface soil Nâcycle processes that are symptoms of N saturation in the enriched site and (2) to evaluate these changes in relation to inputs and outputs of N to the site. Soil inorganicâN levels, litter N content, and potential net N mineralization and nitrification were significantly higher on the enriched site relative to the control site, suggesting that the enriched site and N saturated. However, inputâoutput analysis indicated that the enriched site was still a sink for upland derived NO3â. High rates of denitrification and storage of N in soil organic matter appear to moderate N saturation on the enriched site
Connectivity and Nitrate Uptake Potential of Intermittent Streams in the Northeast USA
Non-perennial streams dominate the extent of stream networks worldwide. Intermittent streams can provide ecosystem services to the entire networkâincluding nitrate uptake to alleviate eutrophication of coastal watersâand are threatened by lack of legal protection. We examined 12 intermittent streams in the temperate, humid climate of the Northeast USA. Over 3 years of monitoring, continuous flow was observed a median of 277 d yrâ1, with no-flow conditions from early summer into fall. Estimated median discharge was 2.9 L sâ1 or 0.36mm dâ1. All intermittent streams originated from source wetlands (median area: 0.27 ha) and the median length of the intermittent stream from the source wetland to the downstream perennial stream was 344m. Through regional geospatial analysis with high resolution orthophotography, we estimated that widely available, âhigh resolutionâ (1:24,000) hydrography databases (e.g., NHDPlus HR) only displayed 43% of the total number of intermittent streams. Whole-stream gross nitrate-N uptake rates were estimated at six intermittent streams during continuous flow conditions using pulse additions of nitrate and a conservative tracer. These rates displayed high temporal variability (range: no detect to over 6,000mg N mâ1 dâ1); hot moments were noted in nine of the 65 pulse additions. Whole-stream gross nitrate-N uptake rates were significantly inversely related to discharge, with no measurable rates above 7 L sâ1. Temperature was significantly positively correlated with whole-stream gross nitrate-N uptake rates, with more hot moments in the spring. Microbial assays demonstrated that nitrate cycling in intermittent streams are consistent with results from low order, perennial forested streams and highlighted the importance of debris dams and poolsâpotential locations for transient storage. Our assessment suggests that intermittent streams in our region may annually contribute 24â47% of the flow to perennial streams and potentially remove 4.1 to 80.4 kg nitrate-N kmâ2 annually. If development in these areas continues, perennial streams are in danger of losing a portion of their headwaters and potential nitrate uptake areas may become nitrate sources to downstream areas. These results argue to manage fluvial systems with a holistic approach that couples intermittent and perennial components
Long-Term Integrated Studies Show Complex and Surprising Effects of Climate Change in the Northern Hardwood Forest
Evaluations of the local effects of global change are often confounded by the interactions of natural and anthropogenic factors that overshadow the effects of climate changes on ecosystems. Long-term watershed and natural elevation gradient studies at the Hubbard Brook Experimental Forest and in the surrounding region show surprising results demonstrating the effects of climate change on hydrologic variables (e.g., evapotranspiration, streamflow, soil moisture); the importance of changes in phenology on water, carbon, and nitrogen fluxes during critical seasonal transition periods; winter climate change effects on plant and animal community composition and ecosystem services; and the effects of anthropogenic disturbances and land-use history on plant community composition. These studies highlight the value of long-term integrated research for assessments of the subtle effects of changing climate on complex ecosystems
Beaver Ponds: Resurgent Nitrogen Sinks for Rural Watersheds in the Northeastern United States
Beaver-created ponds and dams, on the rise in the northeastern United States, reshape headwater stream networks from extensive, free-flowing reaches to complexes of ponds, wetlands, and connecting streams. We examined seasonal and annual rates of nitrate transformations in three beaver ponds in Rhode Island under enriched nitrate-nitrogen (N) conditions through the use of 15N mass balance techniques on soil core mesocosm incubations. We recovered approximately 93% of the nitrate N from our mesocosm incubations. Of the added nitrate N, 22 to 39% was transformed during the course of the incubation. Denitrification had the highest rates of transformation (97â236 mg N mâ2 dâ1), followed by assimilation into the organic soil N pool (41â93 mg N mâ2 dâ1) and ammonium generation (11â14 mg N mâ2 dâ1). Our denitrification rates exceeded those in several studies of freshwater ponds and wetlands; however, rates in those ecosystems may have been limited by low concentrations of nitrate. Assuming a density of 0.7 beaver ponds kmâ2 of catchment area, we estimated that in nitrate-enriched watersheds, beaver pond denitrification can remove approximately 50 to 450 kg nitrate N kmâ2 catchment area. In rural watersheds of southern New England with high N loading (i.e., 1000 kg kmâ2), denitrification from beaver ponds may remove 5 to 45% of watershed nitrate N loading. Beaver ponds represent a relatively new and substantial sink for watershed N if current beaver populations persist
Restarting the conversation: challenges at the interface between ecology and society
8 pĂĄginas, 3 figuras, 2 tablas. -- Copyright by the Ecological Society of AmericaThe exchange of information between researchers, resource managers, decision makers, and the general public has long been recognized as a critical need in environmental science. We examine the challenges in using ecological knowledge to inform society and to change societal actions, and identify a set of options and strategies to enhance this exchange. Our objectives are to provide background information on societal knowledge and interest in science and environmental issues, to describe how different components of society obtain information and develop their interests and values, and to present a framework for evaluating and improving communication between science and society. Our analysis strongly suggests that the interface between science and society can only be improved with renewed dedication to public outreach and a wholesale reconsideration of the way that scientists communicate with society. Ecologists need to adopt new models of engagement with their audiences, frame their results in ways that are more meaningful to these audiences, and use new communication tools, capable of reaching large and diverse target groups.Este artĂculo estĂĄ basado en unas presentaciones orales realizadas en 2009 Cary Conference. The Cary Conference fue financiada por la National Science Foundation (subvenciĂłn #DEB-0840224 y #0949558), el US Department of Agriculture (USDA) Forest Service (subvenciĂłn #09-DG-11132650-083), el US Environmental
Protection Agency (subvenciĂłn #EP09H000638), y el USDA Agriculture and Food Research Initiative Program.Peer reviewe
Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest
To examine the mechanisms of earthworm effects on forest soil C and N, we double-labeled leaf litter with C-13 and N-15, applied it to sugar maple forest plots with and without earthworms, and traced isotopes into soil pools. The experimental design included forest plots with different earthworm community composition (dominated by Lumbricus terrestris or L. rubellus). Soil carbon pools were 37% lower in earthworm-invaded plots largely because of the elimination of the forest floor horizons, and mineral soil C:N was lower in earthworm plots despite the mixing of high C:N organic matter into soil by earthworms. Litter disappearance over the first winter-spring was highest in the L. terrestris (T) plots, but during the warm season, rapid loss of litter was observed in both L. rubellus (R) and T plots. After two years, 22.0% +/- 5.4% of C-13 released from litter was recovered in soil with no significant differences among plots. Total recovery of added C-13 (decaying litter plus soil) was much higher in no-worm (NW) plots (61-68%) than in R and T plots (20-29%) as much of the litter remained in the former whereas it had disappeared in the latter. Much higher percentage recovery of N-15 than C-13 was observed, with significantly lower values for T than R and NW plots. Higher overwinter earthworm activity in T plots contributed to lower soil N recovery. In earthworm-invaded plots isotope enrichment was highest in macroaggregates and microaggregates whereas in NW plots silt plus clay fractions were most enriched. The net effect of litter mixing and priming of recalcitrant soil organic matter (SOM), stabilization of SOM in soil aggregates, and alteration of the soil microbial community by earthworm activity results in loss of SOM and lowering of the C:N ratio. We suggest that earthworm stoichiometry plays a fundamental role in regulating C and N dynamics of forest SOM
Effects of Calcium Silicate Treatment on the Composition of Forest Floor Organic Matter in a Northern Hardwood Forest Stand
Calcium amendment can help improve forest sustainability in stands that have been impacted by chronic acid deposition. An important component of this improvement is the stimulation of the microbial activity that supports ecosystem nutrient cycling processes. To test the hypothesis that Ca treatment alters the structure and solubility of organic matter substrates, an important driver of microbial activity, we investigated the effect of wollastonite (CaSiO3) treatment on soil organic matter (SOM) and hot-water-extractable organic matter (HWEOM). We found a decrease in the HWEOM content of forest floor soils within two years of treatment with a high dosage of wollastonite (4250 kg Ca/ha), but not at a low dosage (850 kg Ca/ha). High-dosage treatment did not reduce the biodegradability of HWEOM. Hence, a high dose of CaSiO3 appears to reduce the solubility of organic matter in the forest floor but not the bioavailability of the extracted SOM. Nuclear magnetic resonance spectroscopy revealed no significant changes in the O-alkyl C content of SOM in response to wollastonite addition, but a reduction in the O-alkyl C content of HWEOM suggests that the extractability of carbohydrate structures was reduced by added CaSiO3. Phosphorous treatment, when performed in combination with Ca, also decreased the O-alkyl C content of HWEOM, but had no effect when performed without Ca. The reduced solubility of SOM after Ca treatment may have been the result of bridging between Ca2+ and negatively charged sites on SOM, as suggested in other studies. Also, high concentrations of Si in soil solution, due to dissolution of the wollastonite, likely resulted in oversaturated conditions with respect to SiO2 or kaolinite, perhaps leading to co-precipitation of soluble organic matter. Overall, our results suggest that added Ca and/or Si may react with SOM to reduce the accessibility of labile C forms to soil microbes
- âŠ