67 research outputs found

    Highly Sensitive Flow Cytometry Allows Monitoring of Changes in Circulating Immune Cells in Blood After Tdap Booster Vaccination

    Get PDF
    © 2021 Diks, Khatri, Oosten, de Mooij, Groenland, Teodosio, Perez-Andres, Orfao, Berbers, Zwaginga, van Dongen and Berkowska.Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.K is supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 707404. The here presented study is a pilot study for the Innovative Medicines Initiative (IMI) PERISCOPE program, a Joint Undertaking under grant agreement No 115910. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation Programme, the European Federation of Pharmaceutical Industries and Associations (EFPIA), and the Bill and Melinda Gates Foundation (BMGF). The flow cytometric studies in this study were supported by the EuroFlow Consortium. The EuroFlow Consortium received support from the FP6-2004-LIFESCIHEALTH-5 program of the European Commission (grant LSHB-CT-2006-018708) as Specific Targeted Research Project (STREP)

    DataSheet_1_Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood.zip

    Get PDF
    Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual “expert-based”) gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.Peer reviewe

    Haul Road Dust Suppression

    No full text

    The quality of qualitative data: the role of explicit memories

    No full text

    Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine

    No full text
    PURPOSE: While in the era of precision medicine, the right drug for each patient is selected based on molecular tumor characteristics, most novel oral targeted anticancer agents are still being administered using a one-size-fits-all fixed dosing approach. In this review, we discuss the scientific evidence for dose individualization of oral targeted therapies in oncology, based on therapeutic drug monitoring (TDM). METHODS: Based on literature search and our own experiences, seven criteria for drugs to be suitable candidates for TDM will be addressed: (1) absence of an easily measurable biomarker for drug effect; (2) long-term therapy; (3) availability of a validated sensitive bioanalytical method; (4) significant variability in pharmacokinetic exposure; (5) narrow therapeutic range; (6) defined and consistent exposure-response relationships; (7) feasible dose-adaptation strategies. RESULTS: All of these requirements are met for most oral targeted therapies in oncology. Also, prospective studies have already shown TDM to be feasible for imatinib, pazopanib, sunitinib, everolimus, and endoxifen. CONCLUSIONS: In order to realize the full potential of personalized medicine in oncology, patients should not only be treated with the right drug, but also at the right dose. TDM could be a suitable tool to achieve this

    Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine

    No full text
    PURPOSE: While in the era of precision medicine, the right drug for each patient is selected based on molecular tumor characteristics, most novel oral targeted anticancer agents are still being administered using a one-size-fits-all fixed dosing approach. In this review, we discuss the scientific evidence for dose individualization of oral targeted therapies in oncology, based on therapeutic drug monitoring (TDM). METHODS: Based on literature search and our own experiences, seven criteria for drugs to be suitable candidates for TDM will be addressed: (1) absence of an easily measurable biomarker for drug effect; (2) long-term therapy; (3) availability of a validated sensitive bioanalytical method; (4) significant variability in pharmacokinetic exposure; (5) narrow therapeutic range; (6) defined and consistent exposure-response relationships; (7) feasible dose-adaptation strategies. RESULTS: All of these requirements are met for most oral targeted therapies in oncology. Also, prospective studies have already shown TDM to be feasible for imatinib, pazopanib, sunitinib, everolimus, and endoxifen. CONCLUSIONS: In order to realize the full potential of personalized medicine in oncology, patients should not only be treated with the right drug, but also at the right dose. TDM could be a suitable tool to achieve this

    Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine

    No full text
    PURPOSE: While in the era of precision medicine, the right drug for each patient is selected based on molecular tumor characteristics, most novel oral targeted anticancer agents are still being administered using a one-size-fits-all fixed dosing approach. In this review, we discuss the scientific evidence for dose individualization of oral targeted therapies in oncology, based on therapeutic drug monitoring (TDM). METHODS: Based on literature search and our own experiences, seven criteria for drugs to be suitable candidates for TDM will be addressed: (1) absence of an easily measurable biomarker for drug effect; (2) long-term therapy; (3) availability of a validated sensitive bioanalytical method; (4) significant variability in pharmacokinetic exposure; (5) narrow therapeutic range; (6) defined and consistent exposure-response relationships; (7) feasible dose-adaptation strategies. RESULTS: All of these requirements are met for most oral targeted therapies in oncology. Also, prospective studies have already shown TDM to be feasible for imatinib, pazopanib, sunitinib, everolimus, and endoxifen. CONCLUSIONS: In order to realize the full potential of personalized medicine in oncology, patients should not only be treated with the right drug, but also at the right dose. TDM could be a suitable tool to achieve this
    corecore