13 research outputs found

    Symplectic evolution of Wigner functions in markovian open systems

    Full text link
    The Wigner function is known to evolve classically under the exclusive action of a quadratic hamiltonian. If the system does interact with the environment through Lindblad operators that are linear functions of position and momentum, we show that the general evolution is the convolution of the classically evolving Wigner function with a phase space gaussian that broadens in time. We analyze the three generic cases of elliptic, hyperbolic and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which is shortest in the hyperbolic case. We also derive an exact formula for the evolving linear entropy as the average of a narrowing gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy.Comment: this new version treats the dissipative cas

    On plane wave and vortex-like solutions of noncommutative Maxwell-Chern-Simons theory

    Full text link
    We investigate the spectrum of the gauge theory with Chern-Simons term on the noncommutative plane, a modification of the description of the Quantum Hall fluid recently proposed by Susskind. We find a series of the noncommutative massive ``plane wave'' solutions with polarization dependent on the magnitude of the wave-vector. The mass of each branch is fixed by the quantization condition imposed on the coefficient of the noncommutative Chern-Simons term. For the radially symmetric ansatz a vortex-like solution is found and investigated. We derive a nonlinear difference equation describing these solutions and we find their asymptotic form. These excitations should be relevant in describing the Quantum Hall transitions between plateaus and the end transition to the Hall Insulator.Comment: 17 pages, LaTeX (JHEP), 1 figure, added references, version accepted to JHE

    Variable Denticity in Carboxylate Binding to the Uranyl Coordination Complexes

    Get PDF
    Tris-carboxylate complexes of uranyl [UO2]2+ with acetate and benzoate were generated using electrospray ionization mass spectrometry, and then isolated in a Fourier transform ion cyclotron resonance mass spectrometer. Wavelength-selective infrared multiple photon dissociation (IRMPD) of the tris-acetato uranyl anion resulted in a redox elimination of an acetate radical, which was used to generate an IR spectrum that consisted of six prominent absorption bands. These were interpreted with the aid of density functional theory calculations in terms of symmetric and antisymmetric −CO2 stretches of the monodentate and bidentate acetate, CH3 bending and umbrella vibrations, and a uranyl O–U–O asymmetric stretch. The comparison of the calculated and measured IR spectra indicated that the predominant conformer of the tris-acetate complex contained two acetate ligands bound in a bidentate fashion, while the third acetate was monodentate. In similar fashion, the tris-benzoate uranyl anion was formed and photodissociated by loss of a benzoate radical, enabling measurement of the infrared spectrum that was in close agreement with that calculated for a structure containing one monodentate and two bidentate benzoate ligands

    The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: Infrared spectrum and structure

    No full text
    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]− was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate ν3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]− compared to the mono-complex [UO2(NO3)3]−, as indicated by a higher O-U-O asymmetric stretching (ν3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the ν3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment

    Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling

    Get PDF
    The stability against gamma radiation of MeTODGA (methyl tetraoctyldiglycolamide) and Me2TODGA (dimethyl tetraoctyldiglycolamide), derivatives from the well-known extractant TODGA (N,N,N′,N′-tetraoctyldiglycolamide), were studied and compared. Solutions of MeTODGA and Me2TODGA in alkane diluents were subjected to 60Co γ-irradiation in the presence and absence of nitric acid and analyzed using LC-MS to determine their rates of radiolytic concentration decrease, as well as to identify radiolysis products. The results of product identification from three different laboratories are compared and found to be in good agreement. The diglycolamide (DGA) concentrations decreased exponentially with increasing absorbed dose. The MeTODGA degradation rate constants (dose constants) were uninfluenced by the presence of nitric acid, but the acid increased the rate of degradation for Me2TODGA. The degradation products formed by irradiation are also initially produced in greater amounts in acid-contacted solution, but products may also be degraded by continued radiolysis. The identified radiolysis products suggest that the weakest bonds are those in the diglycolamide center of these molecules
    corecore