98 research outputs found

    Effects of mexiletine and lacosamide on nerve excitability in healthy subjects: a randomized, double-blind, placebo-controlled, crossover study

    Get PDF
    Selective voltage-gated sodium channel blockers are of growing interest as treatment for pain. For drug development of such compounds, it would be critical to have a biomarker that can be used for proof-of-mechanism. We aimed to evaluate whether drug-induced changes in sodium conductance can be detected in the peripheral nerve excitability profile in 18 healthy subjects. In a randomized, double-blind, 3-way crossover study, effects of single oral doses of 333 mg mexiletine and 300 mg lacosamide were compared with placebo. On each study visit, motor and sensory nerve excitability measurements of the median nerve were performed (predose; and 3 and 6 hours postdose) using Qtrac. Treatment effects were calculated using an analysis of covariance (ANCOVA) with baseline as covariate. Mexiletine and lacosamide had significant effects on multiple motor and sensory nerve excitability variables. Depolarizing threshold electrotonus (TEd40 (40–60 ms)) decreased by mexiletine (estimated difference (ED) −1.37% (95% confidence interval (CI): −2.20, −0.547; P = 0.002) and lacosamide (ED −1.27%, 95% CI: −2.10, −0.443; P = 0.004) in motor nerves. Moreover, mexiletine and lacosamide decreased superexcitability (less negative) in motor nerves (ED 1.74%, 95% CI: 0.615, 2.87; P = 0.004, and ED 1.47%, 95% CI: 0.341, 2.60; P = 0.013, respectively). Strength-duration time constant decreased after lacosamide in motor- (ED −0.0342 ms, 95% CI: −0.0571, −0.0112; P = 0.005) and sensory nerves (ED −0.0778 ms, 95% CI: −0.116, −0.0399; P < 0.001). Mexiletine and lacosamide significantly decrease excitability of motor and sensory nerves, in line with their suggested mechanism of action. Results of this study indicate that nerve excitability threshold tracking can be an effective pharmacodynamic biomarker. The method could be a valuable tool in clinical drug development

    Pain-related changes in cutaneous innervation of patients suffering from bortezomib-induced, diabetic or chronic idiopathic axonal polyneuropathy

    Get PDF
    Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral neuropathy (BiPN; n = 22), painful diabetic neuropathy (PDN; n = 16), chronic i

    Procalcitonin reflects bacteremia and bacterial load in urosepsis syndrome: a prospective observational study

    Get PDF
    Introduction: Guidelines recommend that two blood cultures be performed in patients with febrile urinary tract infection (UTI), to detect bacteremia and help diagnose urosepsis. The usefulness and cost-effectiveness of this practice have been criticized. This study aimed to evaluate clinical characteristics and the biomarker procalcitonin (PCT) as an aid in predicting bacteremia. Methods: A prospective observational multicenter cohort study included consecutive adults with febrile UTI in 35 primary care units and 8 emergency departments of 7 regional hospitals. Clinical and microbiological data were collected and PCT and time to positivity (TTP) of blood culture were measured. Results: Of 581 evaluable patients, 136 (23%) had bacteremia. The median age was 66 years (interquartile range 46 to 78 years) and 219 (38%) were male. We evaluated three different models: a clinical model including seven bedside characteristics, the clinical model plus PCT, and a PCT only model. The diagnostic abilities of these models as reflected by area under the curve of the receiver operating characteristic were 0.71 (95% confidence interval (CI): 0.66 to 0.76), 0.79 (95% CI: 0.75 to 0.83) and 0.73 (95% CI: 0.68 to 0.77) respectively. Calculating corresponding sensitivity and specificity for the presence of bacteremia after each step of adding a significant predictor in the model yielded that the PCT > 0.25 mu g/l only model had the best diagnostic performance (sensitivity 0.95; 95% CI: 0.89 to 0.98, specificity 0.50; 95% CI: 0.46 to 0.55). Using PCT as a single decision tool, this would result in 40% fewer blood cultures being taken, while still identifying 94 to 99% of patients with bacteremia. The TTP of E. coli positive blood cultures was linearly correlated with the PCT log value; the higher the PCT the shorter the TTP (R-2 = 0.278, P = 0.007). Conclusions: PCT accurately predicts the presence of bacteremia and bacterial load in patients with febrile UTI. This may be a helpful biomarker to limit use of blood culture resources.Immunogenetics and cellular immunology of bacterial infectious disease

    Safety, pharmacokinetics and exploratory pro-cognitive effects of HTL0018318, a selective M1 receptor agonist, in healthy younger adult and elderly subjects: a multiple ascending dose study.

    Get PDF
    Funder: Sosei HeptaresBACKGROUND: The cholinergic system and M1 receptor remain an important target for symptomatic treatment of cognitive dysfunction. The selective M1 receptor partial agonist HTL0018318 is under development for the symptomatic treatment of Dementia's including Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). We investigated the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of multiple doses of HTL0018318 in healthy younger adults and elderly subjects. METHODS: This randomised, double blind, placebo-controlled study was performed, investigating oral doses of 15-35 mg/day HTL0018318 or placebo in 7 cohorts of healthy younger adult (n = 36; 3 cohorts) and elderly (n = 50; 4 cohorts) subjects. Safety, tolerability and pharmacokinetic measurements were performed. Pharmacodynamics were assessed using a battery of neurocognitive tasks and electrophysiological biomarkers of synaptic and cognitive functions. RESULTS: HTL0018318 was generally well-tolerated in multiple doses up to 35 mg/day and were associated with mild or moderate cholinergic adverse events. There were modest increases in blood pressure and pulse rate when compared to placebo-treated subjects, with tendency for the blood pressure increase to attenuate with repeated dosing. There were no clinically significant observations or changes in blood and urine laboratory measures of safety or abnormalities in the ECGs and 24-h Holter assessments. HTL0018318 plasma exposure was dose-proportional over the range 15-35 mg. Maximum plasma concentrations were achieved after 1-2 h. The apparent terminal half-life of HTL0018318 was 16.1 h (± 4.61) in younger adult subjects and 14.3 h (± 2.78) in elderly subjects at steady state. HTL0018318 over the 10 days of treatment had significant effects on tests of short-term (working) memory (n-back) and learning (Milner maze) with moderate to large effect sizes. CONCLUSION: Multiple doses of HTL0018138 showed well-characterised pharmacokinetics and were safe and generally well-tolerated in the dose range studied. Pro-cognitive effects on short-term memory and learning were demonstrated across the dose range. These data provide encouraging data in support of the development of HTL0018138 for cognitive dysfunction in AD and DLB. TRIAL REGISTRATION: Netherlands Trial Register identifier NTR5781 . Registered on 22 March 2016

    Safety, pharmacokinetics and pharmacodynamics of HTL0009936, a selective muscarinic M1 -acetylcholine receptor agonist: A randomized cross-over trial.

    Get PDF
    AIMS: HTL0009936 is a selective M1 muscarinic receptor agonist in development for cognitive dysfunction in Alzheimer's disease. Safety, tolerability and pharmacokinetics and exploratory pharmacodynamic effects of HTL0009936 administered by continuous IV infusion at steady state were investigated in elderly subjects with below average cognitive functioning (BACF). METHODS: Part A was a four-treatment open label sequential study in healthy elderly investigating 10-83 mg HTL0009936 (IV) and a 24 mg HTL0009936 single oral dose. Part B was a five-treatment randomized, double-blind, placebo and physostigmine controlled cross-over study with IV HTL0009936 in elderly subjects with BACF. Pharmacodynamic assessments were performed using neurocognitive and electrophysiological tests. RESULTS: Pharmacokinetics of HTL0009936 showed dose-proportional increases in exposure with a mean half-life of 2.4 hours. HTL0009936 was well-tolerated with transient dose-related adverse events (AEs). Small increases in mean systolic blood pressure of 7.12 mmHg (95% CI [3.99-10.24]) and in diastolic of 5.32 mmHg (95% CI [3.18-7.47]) were noted at the highest dose in part B. Overall, there was suggestive, but no definitive, positive or negative pharmacodynamic effects. Statistically significant effects were observed on P300 with HTL0009936 and adaptive tracking with physostigmine. CONCLUSIONS: HTL0009936 showed well-characterized pharmacokinetics and single doses were safe and generally well-tolerated in healthy elderly subjects. Due to physostigmine tolerability issues and subject burden, the study design was changed and some pharmacodynamic assessments (neurocognitive) were performed at suboptimal drug exposures. Therefore no clear conclusions can be made on pharmacodynamic effects of HTL0009936, although an effect on P300 is suggestive of central target engagement

    Clinical, electrophysiological, and cutaneous innervation changes in patients with bortezomib-induced peripheral neuropathy reveal insight into mechanisms of neuropathic pain

    Get PDF
    Bortezomib is a mainstay of therapy for multiple myeloma, frequently complicated by painful neuropathy. The objective of this study was to describe clinical, electrophysiological, and pathological changes of bortezomib-induced peripheral neuropathy (BiPN) in detail and to correlate pathological changes with pain descriptors. Clinical data, nerve conduction studies, and lower leg skin biopsies were collected from 22 BiPN patients. Skin sections were immunostained using anti-protein gene product 9.5 (PGP9.5) and calcitonin gene-related peptide (CGRP) antibodies. Cumulative bortezomib dose and clinical assessment scales indicated light-moderate sensory neuropathy. Pain intensity >4 (numerical rating scale) was present in 77% of the patients. Median pain intensity and overall McGill Pain Questionnaire (MPQ) sum scores indicated moderate to severe neuropathic pain. Sural nerve sensory nerve action potentials were abnormal in 86%, while intraepidermal nerve fiber densities of PGP9.5 and CGRP were not significantly different from healthy controls. However, subepidermal nerve fiber density (SENFD) of PGP9.5 was significantly decreased and the axonal swelling ratio, a predictor of neuropathy, and upper dermis nerve fiber density (UDNFD) of PGP9.5, presumably representing sprouting of parasympathetic fibers, were significantly increased in BiPN patients. Finally, significant correlations between UDNFD of PGP9.5 versus the evaluative Pain Rating Index (PRI) and number of words count (NWC) of the MPQ, and significant inverse correlations between SENFD/UDNFD of CGRP versus the sensory-discriminative MPQ PRI/NWC were found. BiPN is a sensory neuropathy, in which neuropathic pain is the most striking clinical finding. Bortezomib-induced neuropathic pain may be driven by sprouting of parasympathetic fibers in the upper dermis and impaired regeneration of CGRP fibers in the subepidermal layer

    Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders:Randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients

    Get PDF
    RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)-penetrant, small-molecule, reversible inhibitor of RIPK1. In three early-stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well-tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof-of-mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long-term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early-stage clinical trials. The dose-limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1-inhibitors, suggesting that these toxicities are compound-specific (related to SAR443060) rather than RIPK1 pathway-specific

    Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts

    Get PDF
    Introduction: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as unusual, but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. Methods: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. Results: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. Discussion: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered
    corecore