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� We developed an EEG index sensitive to mecamylamine, for monitoring nicotinic cholinergic effects.
� We demonstrate reversal of mecamylamine-induced EEG disturbances both with nicotine and

galantamine.
� The nicotinic acetylcholine receptor index could enable quantifying EEG effects of pro-cognitive

cholinergic compounds.

a b s t r a c t

Objectives: Cognitive impairment models are used in clinical studies aimed at proving pharmacology of
drugs being developed for Alzheimer’s disease and other cognitive disorders. Due to rising interest in
nicotinic agonists, we aimed to establish a method to monitor neurophysiological effects of modulating
the nicotinic cholinergic system.
Methods: In a four-way cross-over study, eyes-closed rest EEG was recorded in 28 healthy subjects receiv-
ingmecamylamine—a nicotinic acetylcholine receptor (nAChR) antagonist, which induces temporary cog-
nitive dysfunction in healthy subjects—with co-administration of placebo, nicotine or galantamine.
Results: Using machine learning to optimally contrast the effects of 30 mg of mecamylamine and placebo
on the brain, we developed a nAChR index that consists of 10 EEG biomarkers and shows high classification
accuracy (�95% non-cross-validated, �70% cross-validated). Importantly, using the nAChR index, we
demonstrate reversal of mecamylamine-induced neurophysiological effects due to 16 mg of galantamine
as well as administering 21 mg of nicotine transdermally.
Conclusions: Our findings indicate that themecamylamine challengemodel jointlywith the nAChR index—
a measure of the nicotinic EEG profile—could aid future proof-of-pharmacology studies to demonstrate
effects of nicotinic cholinergic compounds.
Significance: This novel measure for quantifying nicotinic cholinergic effects on the EEG could serve as a
useful tool in drug development of pro-cognitive compounds.

� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction Buccafusco, 2003; Levin et al., 2006; Nees, 2015) and it holds pro-
The cholinergic system is involved in cognitive processes such
as attention, memory and learning (Jones et al., 1999; Terry and
mise as a therapeutic target due to its role in the pathophysiology
of neurodegenerative and psychiatric disorders (Court et al., 2000;
Sacco et al., 2004; Parri et al., 2011). Hence, anti-cholinergic
pharmacological challenges have been used to induce temporary
cognitive disturbances mimicking Alzheimer’s disease (AD),
scopolamine being the most frequently used challenge drug.
Scopolamine is a selective competitive muscarinic acetylcholine
receptor antagonist, with a high affinity for all muscarinic receptor
subtypes (Ebert and Kirch, 1998). Recently, there is increased
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interest in the nicotinic acetylcholine receptor (nAChR) as a phar-
macological target, as reflected in various clinical trials with nAChR
agonists (Hurst et al., 2013; Valles et al., 2014; Beinat et al., 2015).
Nicotinic receptor agonists are being developed as symptomatic
treatment for cognitive dysfunction in AD and schizophrenia. How-
ever, the use of muscarinic receptor antagonists to prove the phar-
macology of nicotinic receptor agonists is less direct, therefore a
pharmacological challenge model targeting nicotinic cholinergic
systems is needed.

Recently, mecamylamine has regained attention as a potential
anti-nicotinergic challenge model to prove pharmacology of nico-
tinic agonists (Alvarez-Jimenez et al., 2017). Mecamylamine is a
selective non-competitive nAChR antagonist, active in peripheral
autonomic ganglia, but also binding to nAChRs in the brain. In
healthy subjects, mecamylamine leads to temporary, reversible
perturbations of cognitive processes such as attention, reaction
time and memory. Mecamylamine produced errors in learning, lib-
eralization of response bias and increased reaction times
(Newhouse et al., 1992, 1994) and slowing of inspection time dur-
ing a visual discrimination test (Thompson et al., 2000). The effects
of mecamylamine are smaller compared to scopolamine (Baakman
et al., 2017). However, scopolamine also exhibits sedative effects,
which interferes with cognitive functions (Curran et al., 1991;
Robbins et al., 1997). To use mecamylamine as a credible anti-
cholinergic challenge, it is necessary to demonstrate reversibility
of its effects on cognition and physiology.

In humans, co-administration of donepezil partially reverses
mecamylamine-induced cognitive effects (Thompson et al., 2000).
To the best of our knowledge, no study investigated reversal of
mecamylamine effects using EEG. Here, we aimed to further vali-
date mecamylamine as a nicotinic anti-cholinergic challenge
model by identifying effects of mecamylamine on EEG and investi-
gating their reversal by co-administration of galantamine or nico-
tine. Galantamine is a cholinesterase inhibitor, which also exerts
allosteric nicotinic modulatory activity and is used to treat patients
with AD. Nicotine is a nAChR agonist, which acts on all nicotinic
receptors that are believed to play a role in cognitive function
(Levin et al., 2006; Jasinska et al., 2014). Using EEG for proof-of-
pharmacology in early-phase clinical trials supports cognitive tests
in shedding light on physiological effects; however, it remains an
important challenge to select and validate reliable biomarkers
from the complex EEG signals.

Recently, we developed a muscarinic acetylcholine receptor
index which performed with superior accuracy to classify
scopolamine-induced EEG changes compared to any single biomar-
ker (Simpraga et al.; 2017). Here, we used similar machine-
learning procedures to develop a nicotinic cholinergic index using
data from a clinical trial with healthy subjects receiving mecamy-
lamine. The index consists of complementary EEG biomarkers that,
when taken together, outperform any single-biomarker classifica-
tion and, therefore, provides a superior characterization of the
anti-nicotinergic challenge. We further show reversal of
mecamylamine-induced effects on the nAChR index by co-
administration of nicotine or galantamine. The high sensitivity of
the nAChR index could be beneficial in early clinical studies, for
evaluating the efficacy of drugs that aim to induce effects opposite
to mecamylamine, such as those for treatment of AD.
2. Methods

2.1. Study design

Data were obtained from a clinical trial conducted at the Centre
for Human Drug Research (Leiden, the Netherlands) and approved
by the Medical Ethics Review Committee of the Leiden University
Medical Center. All subjects gave written informed consent prior
to study participation and were medically screened.

The trial (EudraCT number 2014-001358-41) was a four-way
cross-over study of a single oral dose of mecamylamine in combi-
nation with either a cholinesterase inhibitor or a nAChR agonist
and matching placebos, as described previously (Alvarez-Jimenez
et al., 2017). The study aimed to demonstrate whether the impair-
ment of cognitive function caused by mecamylamine administra-
tion could be diminished by administration of galantamine or
nicotine. A detailed description of neurophysiologic tests per-
formed in this study has been reported previously (Liem-
Moolenaar et al., 2010b, a; Alvarez-Jimenez et al., 2017). A total
of 33 healthy-smoker male subjects aged 18–45 years were
recruited. However, some subjects had missing measurements, so
the remaining number of subjects available for analysis in the pla-
cebo and mecamylamine condition was 28. No subjects or record-
ings were excluded from the analysis. Healthy status is defined by
the absence of evidence of any active or chronic disease following a
detailed medical and surgical history, a complete physical exami-
nation including vital signs, 12-lead electrocardiogram (ECG),
haematology, blood chemistry, and urinalysis. Exclusion criteria
included the use of agents or drugs known to influence cognitive
performance and evidence of relevant medical abnormalities
including conditions that could cause any kind of cognitive impair-
ment. We did not use additional structured assessment tools to
ascertain healthy status. Incidental smokers, defined as smoking
tobacco at least once a month and no more than 5 cigarettes per
day in the last 3 months, were included because non-smokers
might have experienced more severe side effects derived from
the nicotine and galantamine administration. The treatment arms
were: mecamylamine plus placebo, mecamylamine plus nicotine,
mecamylamine plus galantamine and (double)placebo. Investiga-
tional drugs were administered in the following way: mecamy-
lamine (30 mg) and galantamine hydrobromide (16 mg) orally,
nicotine (21 mg) as a transdermal patch. Placebo was administered
as matching placebo capsules, in appearance identical to active
compounds (mecamylamine and galantamine), orally and as pla-
cebo (vaseline) patch with blinded covering.

Study periods were separated by a washout period of at least
one week. Eyes-closed rest EEG measurements were performed
at 10 time points from baseline (pre-dose) to 8 h after the drug
administration. Measurements would start in the morning, with
two baseline recordings and then 0.5 h, 1.2 h, 2.1 h, 3 h, 3.5 h,
4.4 h, 6 h and 8 h afterwards. Oral medication (mecamylamine/ga
lantamine/placebo) was administered with water at time point
zero of every visit. Five minutes afterwards, a nicotine or placebo
patch was placed on the skin of the shoulder. Apart from the EEG
recordings, a study period day consisted of performing tests such
as the aforementioned neurophysiological tests, vital signs mea-
surements and ECG at several time points. Subjects were dis-
charged 32 h post-dose after monitoring of vital signs was
performed and if subjects were asymptomatic.

2.2. EEG recordings and pre-processing

EEG recordings were made using gold electrodes fixed at Fz, Cz,
Pz, and Oz positions (international 10/20 system), with the same
common ground electrode as for the eye movement registration.
The impedance was kept below 5 kO. EEG signals were obtained
from leads Fz-Cz and Pz-Oz and a separate channel to record eye
movements (for artefacts). The signals were amplified by use of a
Grass 15LT series Amplifier Systems with a time constant of 0.3 s
and a low-pass filter at 100 Hz. The duration of the recordings
was 64 s. Sampling frequency was 64768 Hz, afterwards down-
sampled to 1012 Hz for the analysis. The ongoing EEG was visually
inspected in windows of 10 s and sharp transient artefacts were
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cut out, as well as eye movement and muscle artefacts. Noisy chan-
nels were excluded from the subsequent analysis. After artefact
removal, the average length of recordings was 61 s. In 2.5% of the
recordings, one noisy channel was removed.

2.3. EEG analysis

For the EEG analysis, we used the Neurophysiological Biomar-
ker Toolbox (NBT) (http://www.nbtwiki.net/) (Hardstone et al.,
2012) to calculate biomarkers and custom-made scripts were inte-
grated with the NBT analysis pipeline for advanced statistics,
employing data mining algorithms to combine information from
multiple biomarkers. We employed biomarker algorithms to
extract both temporal and spectral information from EEG signals
in frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), and beta (13–30 Hz). The power in these frequency bands
was computed using the Welch method with an 8192-point Ham-
ming window and a frequency resolution of 0.12 Hz. Relative
power was calculated by dividing absolute power in each fre-
quency band with integrated power over 1–45 Hz. Central fre-
quency, fc, and bandwidth, fd were computed according to these
formulas:

f c ¼
Pf H

f¼f L
fPðf ÞPf H

f¼f L
Pðf Þ

ð1Þ

f d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf H

f¼f L
ðf � f cÞ2Pðf ÞPf H
f¼f L

Pðf Þ

vuut ; ð2Þ

where fL and fH represent the lowest and highest frequency that
defines a given frequency band (Vural and Yildiz, 2010), and Pðf Þ
denotes power at frequency f. Thus, the central frequency biomar-
ker indicates where the power is concentrated within a frequency
band, whereas the bandwidth indicates how much the power is
spread out around the central frequency.

The amplitude envelope was extracted using the Hilbert trans-
form and analyzed for long-range temporal correlations using
detrended fluctuation analysis (DFA) (Peng et al., 1995,
Linkenkaer-Hansen et al., 2001, Hardstone et al., 2012). DFA quan-
tifies how slowly auto-correlations of amplitude modulation decay
with the DFA power-law exponent ranging from 0.5 (uncorrelated)
to 1.0 (strong auto-correlations). Signals were filtered using a FIR
filter with a Hamming window with a length corresponding to
two f 1 Hz cycles for frequency band [f1, f2]. To minimize temporal
correlations introduced by the FIR filter, DFA was fitted in the
interval from 4 to 20 s for delta and theta band, from 2 to 20 s
for alpha and 1 to 20 s for the beta band (Hardstone et al., 2012).
The oscillation-burst lifetime was used to quantify differences in
amplitude dynamics of oscillations on short to intermediate time
scales (< 1 s) (Montez et al., 2009, Poil et al., 2011). We used a
threshold at the median of the amplitude envelope and defined
beginning and end of an oscillation burst as time points of crossing
this threshold. The duration of oscillation bursts was calculated by
taking the 95th percentile of all durations measured within each
channel, which we refer to as oscillation-burst ‘‘lifetime” biomar-
ker (Montez et al., 2009). In total, 20 biomarkers were extracted
from each EEG signal. Each biomarker was computed over two
bipolar channels (Fz-Cz and Pz-Oz), therefore resulting in 40 fea-
tures for classification analysis.

2.4. Statistical analysis

Machine learning techniques were employed to determine
biomarkers that best distinguished mecamylamine from placebo.
From time-dependent curves of EEG biomarkers, we identified
the peak effect of mecamylamine on most EEG biomarkers to be
3 h after administration—in agreement with the peak drug effect
time point according to cognitive measurements (Baakman et al.,
2017); therefore, we performed classification on the EEG biomark-
ers from the recording 3 h after administration. To eliminate vari-
ation between days, we subtracted the biomarkers of the baseline
recording from biomarkers at 3 h. A feature matrix was built from
EEG biomarkers—in the form #features � #samples—with the aim
of identifying sets of biomarkers that were more discriminative
between the two groups than each individual biomarker. The list
of features was as follows: relative power, central frequency, band-
width, DFA and oscillation burst lifetime in the delta, theta, alpha
and beta band, for two bipolar channels. Per subject, there were
two samples: the placebo EEG recording and the mecamylamine
recording. In total, this gave 40 features and 55 samples (28 pla-
cebo and 27 mecamylamine recordings). Feature selection and
classification were performed simultaneously using elastic net
logistic regression.

The nAChR index was identified by applying the classification
algorithm to the whole dataset; however, cross-validation was
used to evaluate the stability of the result, i.e., classification with
100 different splits of the data into training and test sets were per-
formed to obtain the median and median absolute deviation of the
classification performance, which provides an estimate of the clas-
sification performance on a ‘‘novel” sample (Witten et al., 2011). In
the training phase, the index was developed by applying the
feature-selection algorithm to training data and in the test phase,
the index was applied to predict the class membership on the test
data. The features used for machine learning were z-scored EEG
biomarker values. To avoid introducing test data information into
the classifier, we normalized both the training and the test data
by subtracting the mean and dividing by the standard deviation
of biomarker values from the training data only. We performed
Monte-Carlo cross-validation with 70/30% random splitting, i.e.,
from a random permutation of the samples (i.e. recordings), 70%
were used for training and 30% for testing. The number of samples
is twice the number of subjects: per subject, the placebo EEG
recording was used as the first sample and the mecamylamine
recording as the second sample. Therefore, the total number of
samples was 55. Correspondingly, the training set consisted of 39
EEG recordings and the test set 16 recordings.

2.5. Elastic net logistic regression

Because of correlation between some of the features and an
interest in reducing the number of features, we chose to use the
elastic net (Zou and Hastie, 2005), which has sparsity and grouping
of correlated features as properties. Additionally, elastic net is an
embedded method, which performs both feature selection and
classification. It is a regularized logistic regression that bridges
the gap between lasso (Tibshirani, 2011) and ridge regression
(Hoerl and Kennard, 1970) by combining their penalties and opti-
mizing the number of features included in the integrated index
through minimizing the function:

Lðk1; k2;bÞ ¼ jy� Xbj2 þ k1jjbjj1 þ k2jjbjj22; ð3Þ
where X is the feature matrix, y is the response vector (the class
labels), b the weights, and k1 and k2 coefficients determining the
influence of the L1 and L2 norm penalties, respectively. The first
term is similar to logistic regression while the second and third
terms form the elastic net penalty function. If we denote:

a ¼ k2=ðk1 þ k2Þ
then the elastic net penalty can be rewritten as

ð1� aÞjjbjj1 þ ajjbjj22

http://www.nbtwiki.net/
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where a acts as the balancing term between the L1 and L2 norm
penalties. We optimized a in a 5-fold cross-validation procedure
and found the best classification performance with a = 1, which is
the lasso regression.

By minimizing the L-function, we obtain the set of n selected
features corresponding to the ones with highest b values. If p is
the probability that an EEG recording belongs to the mecamy-
lamine condition, then the odds ratio is p/(1 � p), which is the ratio
of the probability of mecamylamine to the probability of baseline
recording. Logistic regression models the log odds ratio as a linear
combination of the independent variables, via this equation:

ln
p

1� p

� �
¼ b0 þ b1f 1 þ � � � þ bnf n; ð4Þ

where fi are the features and bi the associated weights. The log odds
can be transformed back to probabilities as:

pðtÞ ¼ 1
1þ expð�tÞ ; t ¼ b0 þ b1f 1 þ � � � þ bnf n: ð5Þ
2.6. Classification outcome evaluation

To evaluate the classification performance of the nAChR index
we used four different measures, defined as:

Accuracy (AC): (number of correctly classified mecamylamine
and placebo recordings)/(total number of recordings).

Sensitivity (SE): (number of correctly classified mecamylamine
recordings)/(number of mecamylamine recordings).

Specificity (SP): (number of correctly classified placebo record-
ings)/(number of placebo recordings).

Area Under Curve (AUC): area under the Receiver Operating
Characteristic (ROC) curve, which plots the true positive rate (SE)
against the true negative rate (1-SP) as the discrimination thresh-
old of the classifier is varied. A higher AUC means better classifica-
tion performance.
3. Results

3.1. Enhanced classification with integrated nAChR index

To gain a comprehensive understanding of the effects of
mecamylamine on the EEG, we employed biomarker algorithms
characterizing spectral content as well as temporal dynamics of
neuronal oscillations. A significant mecamylamine effect compared
to placebo was observed for several biomarkers. Power spectrum
analysis of broadband EEG signals revealed a reduction in relative
power in alpha and beta bands, as well as an increment in delta
and theta relative power, most notably in parieto-occipital regions.
Central frequency was decreased in alpha band, while increased in
the delta band. The short-time scale temporal structure of narrow-
band oscillations was quantified using oscillation-burst lifetime
analysis and revealed a tendency towards longer alpha bursts
and shorter beta bursts after mecamylamine administration.
Long-range temporal correlations were quantified using detrended
fluctuation analysis and were generally stronger in the mecamy-
lamine condition across frequency bands and regions, except for
the delta band. Considering that mecamylamine administration
affected both spectral and temporal dynamics of the EEG and that
many of these biomarkers carry complementary information about
EEG effects of mecamylamine, combining this information may
result in a more sensitive measure of the nicotinic anticholinergic
effects compared to any of the individual ones.

We used machine learning techniques to find biomarkers that
best distinguish placebo from mecamylamine conditions, at the
peak effect time point. Previous studies have reported
mecamylamine-induced ‘‘slowing” of the EEG, reflected in power
and frequency shifts mostly in the delta, theta and alpha frequency
band (Pickworth et al., 1988, Knott et al., 1997, Pickworth et al.,
1997). Therefore, to identify the peak effect of mecamylamine,
we inspected time-dependent curves of those biomarkers where
we expected to find the strongest effects, known from the litera-
ture. Biomarkers curves were noisy due to many time points, miss-
ing data points, and few subjects but they revealed the peak effect
occurring around 3 h after mecamylamine administration (Fig. 1A).
Therefore, the classification was performed on EEG recorded 3 h
after administration of mecamylamine subtracted by the respec-
tive baseline recording, for placebo vs mecamylamine (see Meth-
ods, Statistical analysis). An integrated index was developed
using elastic net on data from healthy subjects (n = 28 males, see
Methods) that received mecamylamine, which allows a fraction—
determined by the algorithm—of the 40 available biomarkers to
be included. Accuracy, sensitivity, specificity, and area under curve
increased with the number of features included in the index
increased to 10 (Fig. 1B). Adding more features did not improve
classification performance further. Thus, the integrated nAChR
index consists of 10 biomarkers and their associated weights as
visualized in Fig. 1C. Descriptive statistics of the nAChR biomarkers
are provided in Table 1.

The nAChR index had excellent performance when training and
testing on the same data (accuracy 95%, sensitivity 93%, specificity
96% and area under curve 0.98), and much higher than relative
theta power, which was the single-best biomarker (accuracy 72%,
sensitivity 70%, specificity 74% and area under curve 0.78)
(Fig. 1D). Accordingly, differences between the placebo predicted
group and the mecamylamine predicted group (Fig. 1D) was much
more pronounced for the nAChR index (p < 10�9, Wilcoxon rank
sum test) than for relative delta (p < 10�4). The single-best biomar-
ker was determined by performing elastic net classification using
each of the features alone and then ranking them by the average
of the different classification outcome measures from cross-
validation. To obtain a more accurate estimate of the classification
performance, we used cross-validation with 100 iterations. The dif-
ference in performance per cross-validation is due to different sub-
sets of subjects used for training and testing in each iteration, and
results in slightly different biomarker selections and weights.
Cross-validation resulted in an accuracy of 69 ± 6%, sensitivity of
75 ± 13%, specificity of 75 ± 13% and area under curve 79 ± 9%,
which is higher than using just relative theta power: accuracy of
69 ± 6%, sensitivity of 63 ± 13%, specificity of 75 ± 13% and area
under curve 77 ± 9%.

3.2. The nAChR index consists of complementary biomarkers

To better understand why the integrated index offers more
accurate monitoring of changes in brain dynamics following
mecamylamine administration, we cross-correlated all biomarkers
in the nAChR index, using Pearson correlation coefficient (Fig. 2).
Correlations among selected biomarkers were relatively low, with
the average absolute correlation of 0.25, suggesting a high degree
of complementarity and reinforcing the idea that specific manipu-
lation of receptor functioning leads to a multitude of changes in
neuronal population activity and the associated EEG signals.

3.3. Reversal of mecamylamine effects with nicotine and galantamine
successfully demonstrated by the nAChR index

To verify that the mecamylamine model can be used for proof-
of-pharmacology, we tested the ability of nicotine and galantamine
to reverse mecamylamine-induced effects. Administration of these
compounds together with mecamylamine resulted in a strong
reversal of effects observed when mecamylamine was adminis-



Fig. 1. Machine learning enhances the ability to detect mecamylamine-induced changes in EEG. (A) Mecamylamine affects several EEG characteristics, with the effect peaking
around 3 h for most biomarkers. Time dependence curves of relative power and central frequency (columns) for delta, theta and alpha frequency bands (rows) are shown for
placebo (blue) and mecamylamine (red). All biomarkers are shown as averages over the 2 channels (Fz-Cz and Pz-Oz). Time denotes time elapsed from administration of
mecamylamine/placebo and P stands for pre-dose (before administration). Vertical dashed line points to the peak effect time point (3 h). (B) Classification performance
increased with the number of features included in the integrated index. (C) Nearly all of the biomarkers selected by elastic net logistic regression for inclusion in the
integrated nAChR index differed significantly between placebo and mecamylamine. Biomarkers are ordered by their absolute weights, decreasing clockwise from the top.
Weights (b) are listed next to each biomarker in the legend (PO denotes Pz-Oz and FC denotes Fz-Cz). The values plotted on the spider plot are the z-score group means and
standard error of the mean, normalized to [0, 1] by subtracting the minimum across all biomarkers and dividing with the largest range present (i.e., the difference between
the minimum and maximum value found for the biomarkers with the largest difference). (D) The nAChR index was more sensitive to the mecamylamine intervention than
relative theta power (p < 10�8, paired-samples t-test, performed on the differences between placebo and mecamylamine with matched subjects). The plot shows z-scored
biomarker values per subject recording. Singled-out symbols represent median values per group with standard error bars. The dashed line indicates the threshold of the
classifier to predict the recordings as a placebo (below) or a mecamylamine (above) recording. Pcb denotes placebo and mcmmecamylamine. (E) Same as (D) but instead of z-
scored biomarker values, predictive probabilities obtained from the classifier are shown. Significance levels for this figure are based on the Wilcoxon signed rank test.(For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Effects of mecamylamine intervention on the nAChR index biomarkers, at the peak effect time point (3 h after administration of mecamylamine/placebo) subtracted by the
baseline recording. Mean, standard deviation, difference and a p value are given per biomarker, using the paired-samples t-test. Pcb denotes placebo and mcm mecamylamine.

Variable Mean Standard deviation P-value

Placebo Mecamylamine Mcm-Pcb Placebo Mecamylamine

Rel. power (theta, PO) �1.55 5.2 6.75 7.33 6.54 0.0008
Lifetime (beta, FC) 5.99 �14.8 �20.79 39.91 30.62 0.04
Lifetime (alpha, PO) �455.06 67.97 523.03 1012.4 815.66 0.04
DFA (alpha, PO) �0.08 0.01 0.09 0.21 0.22 0.12
Central freq. (alpha, PO) �0.04 �0.17 �0.13 0.26 0.31 0.12
DFA (delta, PO) 0.01 �0.01 �0.02 0.16 0.18 0.75
Lifetime (theta, FC) 2.74 1.47 �1.27 283.42 448.2 0.99
Lifetime (alpha, FC) �81.42 18.49 99.91 396.1 477.44 0.4
Bandwidth (beta, FC) 0.02 0.13 0.11 0.24 0.28 0.12
Rel. power (delta, FC) �1.82 0.74 2.56 8.81 9.2 0.3
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tered alone. As expected, nicotine—a nicotinic agonist—achieved a
stronger reversal compared to galantamine. Mecamylamine inter-
vention produced a significant increase in the nAChR index com-
pared to placebo, with all except one subject displaying this
effect (Fig. 3A). Co-administration of galantamine greatly reduced
the nAChR index scores, and nicotine co-administration even more
so (Fig. 3B, C). Importantly, both galantamine and nicotine show a
consistent reversal pattern towards placebo, with most of the



Fig. 3. nAChR index demonstrates successful reversal of mecamylamine-induced
effects by nicotine and galantamine. Values of nAChR index are shown for
individual subjects and paired between different conditions. Pcb stands for placebo,
mcm for mecamylamine, gal for galantamine and nic for nicotine. (A) Individual
nAChR index values differ significantly between the placebo and mecamylamine
administration. A remarkably consistent effect is visible, with all but one subject
showing higher nAChR values in mecamylamine condition compared to placebo. (B)
Paired individual nAChR values for subjects receiving mecamylamine and mecamy-
lamine co-administered with galantamine. Galantamine administration rescued
mecamylamine effects as reflected in a reduction of the nAChR index values for
most subjects, albeit not reaching the low mean index score of the placebo in (A).
(C) Nicotine co-administration reversed mecamylamine effects, reducing the nAChR
index value for almost all subjects. Significance levels are based on repeated-
measures ANOVA (p = 1.75 * 10�7) and Fisher’s least significant difference as a post-
hoc test. (D, E) Galantamine and nicotine reverse all the nAChR biomarkers towards
placebo (Fig. 1C). Details on construction of the plots as well as the index biomarker

Fig. 2. The EEG biomarkers in the nAChR index exhibit a high degree of
complementarity. The correlation matrix visualizes the relationship between pairs
of nAChR biomarkers. Low correlations among the selected biomarkers indicate
high complementarity and low redundancy, confirming the added value gained by
integrating them into a combined index. The correlations are double-coded with the
color and size of the disk.
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nAChR-sensitive biomarkers participating in the reversal
(Fig. 3 D, E).

We quantified the reversal effects by performing repeated-
measures ANOVA, which identified a statistically significant effect
of drug condition on the nAChR index (F(3,60) = 15.24,
p = 1.75 * 10�7). Post-hoc analysis using Fisher’s least significant
difference revealed a reversal of mecamylamine effects both for
nicotine and galantamine co-administration (p = 8 * 10�4 for nico-
tine, p = 0.02 for galantamine), with the nicotinic effect being
stronger (Fig. 3B, C). When using the more conservative Bonferroni
correction, the reversal only reached significance for nicotine
(p = 4 * 10�3 for nicotine, p = 0.14 for galantamine). Of note,
whereas drug condition had a significant effect on relative theta
power (ANOVA: F(3,60) = 6.6, p = 6.3 * 10�4), both post-hoc tests
indicated that neither nicotine nor galantamine reversed relative
theta power—the single best biomarker (Fisher’s least significant
difference: p = 0.15 for nicotine, p = 0.4 for galantamine, Bonfer-
roni: p = 0.88 for nicotine, p = 1 for galantamine). We take this as
proof-of-principle that using the nAChR index is better than a
single-biomarker approach for proof-of-pharmacology studies
aiming to demonstrate effects of nicotinic cholinergic compounds.
list can be found in Fig. 1C and its legend.
4. Discussion

In this study, we aimed to develop a nicotinic cholinergic EEG
index, based on data from a study testing mecamylamine as a
proof-of-pharmacology challenge model. Mecamylamine adminis-
tration induced widespread EEG changes, affecting both the spec-
tral content and temporal dynamics of neuronal oscillations.
Using machine learning, we integrated the multitude of effects into
a nAChR index, which had a high accuracy for distinguishing the
mecamylamine condition from placebo. Importantly, the nAChR
index had a higher performance than any single EEG biomarker.
We also established a low degree of cross-correlations between
the biomarkers composing the nAChR index, thus indicating
complementarity in the information they carry. Finally, we
demonstrated that both nicotine and galantamine reverse
mecamylamine-induced effects on the EEG using the nAChR index.
We hope that in the near future it will be possible to validate or
improve the index using a better spatial coverage as well as a lar-
ger sample size.

Using EEG and spectral analysis to monitor the effects of
mecamylamine, previous studies have reported a so-called ‘‘slow-
ing” of the EEG (Pickworth et al., 1988, Knott et al., 1997, Pickworth
et al., 1997). We also observed this, with mecamylamine being
related to a decrease in relative alpha and beta power, while
increasing the relative power in the delta and theta frequency
bands. The frequency within these bands was correspondingly
affected as reflected in a decrease in the central frequency of the
alpha band, and an increase in central frequency in the delta band.
Such EEG changes are reminiscent of those observed in patients
with Alzheimer’s disease, e.g., a decrease in posterior alpha power
and an increase in frontal and posterior theta power (van Straaten
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et al., 2014). Other biomarkers affected by mecamylamine included
the oscillation burst lifetime duration biomarker, which decreased
in the beta band and increased in the alpha band. DFA increased
most notably in the alpha band, indicating stronger alpha long-
range temporal correlations, which was included in the nAChR
index. In early-stage AD, the findings for DFA alpha and lifetime
alpha were opposite to mecamylamine effects that we report
(Montez et al., 2009). However, the mecamylamine effects are
comparable to scopolamine for DFA, with both anticholinergic
compounds inducing a global increase in DFA across multiple fre-
quency bands (Simpraga et al., 2017). It is possible that these
seemingly conflicting observations relate to differences in the
dosage which can exert divergent responses due to u-shaped
dose-response in pharmacology (Poil et al., 2011). For a better
insight into the effect of cholinergic functioning and the stability
of neuronal oscillations, more studies are needed. The effects of
mecamylamine administration on bandwidth were most pro-
nounced in the beta band and included in the nAChR index. The
bandwidth was increased in beta band, which has been associated
with less frequency stability of the beta oscillations and potentially
to a less efficient working memory (Kopell et al., 2011). It is
remarkable that lifetime and DFA biomarkers play such a promi-
nent role in the composition of the nAChR index considering the
short recordings available to our study and the intrinsic need for
considerable recording durations for these time-series analyses.
We speculate that recordings of 3–5 min would have resulted in
better classification results; however, we also note that the selec-
tion of biomarkers quantifying the temporal structure of the ampli-
tude modulation of neuronal oscillations even from relatively short
1-min recordings is in line with our previous study using similar
recording durations to develop a mAChR index (Simpraga et al.,
2017).

Compared to scopolamine, the magnitude of the EEG effects fol-
lowing mecamylamine administration were overall lower, but the
directionality was in agreement for most of the biomarkers, with
the exceptions being oscillation-burst lifetime duration in the
alpha and beta bands and central frequency alpha, which exhibited
the opposite changes for mecamylamine than scopolamine inter-
vention (Simpraga et al., 2017).

To our knowledge, this is the first study using machine learning
for classifying mecamylamine effects on the EEG. Past studies have
focused on developing a muscarinic index (Snaedal et al., 2010,
Johannsson et al., 2015, Simpraga et al., 2017). The nicotinic index
provides a physiological means to non-invasively monitor the
nicotinic cholinergic activity in the human brain. The greater per-
formance of the nAChR index compared to any single biomarker
can be attributed to the feature selection and classification with
lasso, which is suitable for correlated variables and aims at select-
ing sparse models. To verify this, we cross-correlated the biomark-
ers composing the nAChR index and found these correlations to be
low, thus displaying a high degree of complementarity among the
selected biomarkers.

Reversal of mecamylamine-induced effects by nAChR agonists
has not been previously demonstrated in humans with EEG. So
far, the only drug reported to partially reverse mecamylamine-
induced effects in healthy subjects was donepezil, using a visual
discrimination test (Thompson et al., 2000). Here, we provided evi-
dence for the nicotinic reversal of effects produced by mecamy-
lamine administration using the nAChR index. The reversal of the
EEG effects resulting from mecamylamine administration by nico-
tine indicates that both drugs affect the nicotinic cholinergic cen-
tral neuronal system. We also showed the reversal effect of
galantamine, albeit less pronounced compared to nicotine. The rea-
son could be that the dose used was too low. Namely, galantamine
has been reported to reverse electroencephalographic and sedative
disturbances produced by scopolamine (Baraka and Harik, 1977),
but in that study 0.5 mg kg�1 of galantamine was used, while in
the current study the dose was 0.21 mg kg�1.

The present study recruited incidental smokers in order to
diminish the risk of severe side effects from nicotine and galan-
tamine administration. This should not be a confounding factor,
as previous studies have found mecamylamine to produce similar
EEG effects in smokers and non-smokers (Pickworth et al., 1997).
However, this has not been established for nicotine and
galantamine using EEG; therefore, it would be of interest for future
studies to investigate this.

Scopolamine has been used as the standard drug for inducing
cognitive impairment in healthy volunteers; however, it also
induces undesirable sedative effects, as well as non-specific behav-
ioral effects and peripheral side-effects (Klinkenberg and Blokland,
2010). Therefore, more selective muscarinic antagonists have been
proposed. Furthermore, some studies suggest the use of muscarinic
and nicotinic cholinergic blockade combined as a model of
memory impairment, as both muscarinic and nicotinic receptors
synergistically modulate cognitive function (Erskine et al., 2004;
Green et al., 2005; Ellis et al., 2006). However, an EEG study on this
topic found that the co-administration of scopolamine and
mecamylamine induced similar changes to those observed with
mecamylamine alone in the spectral content of the EEG (Knott
et al., 1997). In the growing field of drug development focusing
on nicotinic agonists (Hurst et al., 2013; Valles et al., 2014;
Beinat et al., 2015), the most adequate cognitive impairment
model would be one targeting the nicotinic receptor such as
mecamylamine. Moreover, in order for a drug to be used as a cred-
ible model for dementia, its temporary cognitive disturbance needs
to be reversible, and for mecamylamine we demonstrate this with
a standard cholinesterase inhibitor drug as well as a nicotinic
agonist.

In conclusion, we have presented a nAChR index, which serves
as an EEG signature of the nicotinic anticholinergic challenge. It
combines the most prominent, complementary biomarkers from
both the spectral and temporal EEG domain. The index is a highly
accurate measure of the nicotinic anticholinergic intervention and
can successfully detect reversal of mecamylamine-induced EEG
disturbances by co-administration of either nicotine or galan-
tamine. Therefore, our findings indicate that the mecamylamine
challenge model in combination with modern EEG assessments
could play an important part in understanding the complex role
of the nicotinic cholinergic system in cognition and for evaluating
novel pro-cognitive compounds acting on the nicotinic acetyl-
choline receptor.
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