3,145 research outputs found

    Partial-measurement back-action and non-classical weak values in a superconducting circuit

    Get PDF
    We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures

    Gut microbiota, metabolism and psychopathology:A critical review and novel perspectives

    Get PDF
    Psychiatric disorders are often associated with metabolic comorbidities. However, the mechanisms through which metabolic and psychiatric disorders are connected remain unclear. Pre-clinical studies in rodents indicate that the bidirectional signaling between the intestine and the brain, the so-called microbiome-gut-brain axis, plays an important role in the regulation of both metabolism and behavior. The gut microbiome produces a vast number of metabolites that may be transported into the host and play a part in homeostatic control of metabolism as well as brain function. In addition to short chain fatty acids, many of these metabolites have been identified in recent years. To what extent both microbiota and their products control human metabolism and behavior is a subject of intense investigation. In this review, we will discuss the most recent findings concerning alterations in the gut microbiota as a possible pathophysiological factor for the co-occurrence of metabolic comorbidities in psychiatric disorders

    Self-organization of stabilized microtubules by both spindle and midzone mechanisms in Xenopus egg cytosol

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 24 (2013): 1559-1573, doi:10.1091/mbc.E12-12-0850.Previous study of self-organization of Taxol-stabilized microtubules into asters in Xenopus meiotic extracts revealed motor-dependent organizational mechanisms in the spindle. We revisit this approach using clarified cytosol with glycogen added back to supply energy and reducing equivalents. We added probes for NUMA and Aurora B to reveal microtubule polarity. Taxol and dimethyl sulfoxide promote rapid polymerization of microtubules that slowly self-organize into assemblies with a characteristic morphology consisting of paired lines or open circles of parallel bundles. Minus ends align in NUMA-containing foci on the outside, and plus ends in Aurora B–containing foci on the inside. Assemblies have a well-defined width that depends on initial assembly conditions, but microtubules within them have a broad length distribution. Electron microscopy shows that plus-end foci are coated with electron-dense material and resemble similar foci in monopolar midzones in cells. Functional tests show that two key spindle assembly factors, dynein and kinesin-5, act during assembly as they do in spindles, whereas two key midzone assembly factors, Aurora B and Kif4, act as they do in midzones. These data reveal the richness of self-organizing mechanisms that operate on microtubules after they polymerize in meiotic cytoplasm and provide a biochemically tractable system for investigating plus-end organization in midzones.Our work was funded primarily by National Institutes of Health Grant GM23928

    Ultra-high-definition (22 MHz) ultrasound of the ulnar nerve:additional value and normative data

    Get PDF
    We studied 30 healthy volunteers (60 arms), categorized into three age groups with equal numbers to verify if a 22 MHz compared with a 15 MHz ultrasound transducer has additional value for studying the intraneural architecture of the ulnar nerve throughout its course. At six sites, there were no differences in cross-sectional area measurements between the two transducers. With both, the cross-sectional area was significantly larger at the medial epicondyle compared with the other sites and smaller at the mid-forearm and Guyon’s canal compared with the mid-upper arm. With higher age the cross-sectional area significantly increased. Significantly more fascicles were visible distal to the medial epicondyle compared with more proximal sites, as well as in men compared with women. Finally, higher body weight was related to a significantly smaller number of fascicles being seen. A 22 MHz transducer depicts more details of the intraneural architecture than a 15 MHz transducer. Our data can be used as normative data or reference values in analysing ulnar nerve pathology.Level of evidence: I

    Ultra-high-definition (22 MHz) ultrasound of the ulnar nerve:additional value and normative data

    Get PDF
    We studied 30 healthy volunteers (60 arms), categorized into three age groups with equal numbers to verify if a 22 MHz compared with a 15 MHz ultrasound transducer has additional value for studying the intraneural architecture of the ulnar nerve throughout its course. At six sites, there were no differences in cross-sectional area measurements between the two transducers. With both, the cross-sectional area was significantly larger at the medial epicondyle compared with the other sites and smaller at the mid-forearm and Guyon’s canal compared with the mid-upper arm. With higher age the cross-sectional area significantly increased. Significantly more fascicles were visible distal to the medial epicondyle compared with more proximal sites, as well as in men compared with women. Finally, higher body weight was related to a significantly smaller number of fascicles being seen. A 22 MHz transducer depicts more details of the intraneural architecture than a 15 MHz transducer. Our data can be used as normative data or reference values in analysing ulnar nerve pathology.Level of evidence: I

    Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 26 (2015): 3628-3640, doi:10.1091/mbc.E15-04-0233.Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow.This work was supported by National Institutes of Health Grant GM39565 (T.J.M.) and MBL fellowships from the Evans Foundation, MBL Associates, and the Colwin Fund (T.J.M. and C.M.F.)

    Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Current Biology 19 (2009): 1210-1215, doi:10.1016/j.cub.2009.05.061.During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle since it locally activates critical spindle assembly factors. Here, we show in Xenopus egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin, and a CPC-dependent signal predominantly generated from centromeric chromatin.This work was supported by the American Cancer Society (grant PF0711401 to T.J. Maresca), the National Cancer Institute (grant CA078048-09 to T.J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J.C. Gatlin and grant GM24364 to E.D. Salmon)

    Evaluation of six immunoassays for detection of dengue virus-specific immunoglobulin M and G antibodies

    Get PDF
    The performance of six commercially available immunoassay systems for the detection of dengue virus-specific immunoglobulin M (IgM) and IgG antibodies in serum was evaluated. These included two IgM and IgG enzyme immunoassays (EIA) from MRL Laboratories and PanBio, a rapid immunochromatographic test (RIT) from PanBio, immunofluorescence assays (IFA) from Progen, a dot blot assay from Genelabs, and a dipstick EIA from Integrated Diagnostics (INDX). For this study a panel of 132 serum samples, including 90 serum samples from patients with suspected dengue virus infection and 42 serum samples from patients with other viral infections, was used. In addition, serial serum samples from two monkeys experimentally immunized and challenged with dengue virus type 2 were used. Results were considered conclusive when concordant results were obtained with four of the six antibody-specific assays. Based on this definition, the calculated overall agreement for the human serum samples for the respective IgM immunoassays was 97% (128 of 132), with 34% (45 of 132) positive serum samples, 63% (83 of 132) negative samples, and 3% of samples (4 of 132) showing discordant results. The calculated overall agreement for the IgG assays was 94% (124 of 132), with 49% (65 of 132) positive, 45% (59 of 132) negative, and 6% (8 of 132) discordant results, respectively. The sensitivities of the dengue virus-specific assays evaluated varied between 71 and 100% for IgM and between 52 and 100% for IgG, with specificities of 86 to 96% and 8

    CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms

    Get PDF
    Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.</p
    • …
    corecore