8 research outputs found

    Mass Spectrometry-Based Characterization, Quantitation, And Repair Investigations Of Complex DNA Lesions

    Get PDF
    University of Minnesota Ph.D. dissertation. March 2018. Major: Medicinal Chemistry. Advisor: Natalia Tretyakova. 1 computer file (PDF); xxv, 359 pages.DNA is constantly under the threat of damage by various endogenous and exogenous agents, leading to the structural modification of nucleobases (DNA adducts). These DNA adducts can range from smaller nucleoside monoadducts and exocyclic adducts, to the helix distorting and super-bulky DNA-DNA cross-links and DNA-protein cross-links. If not repaired, DNA adducts can inhibit crucial biological processes such as DNA replication, leading to adverse consequences such as mutagenesis and carcinogenesis. Therefore, understanding the atomic connectivity, extent of formation, and repair of DNA adducts is crucial to fully elucidating the biological consequences of the adduct. DNA-protein cross-links (DPCs) are ubiquitous, super-bulky DNA lesions that form when proteins become irreversibly trapped on chromosomal DNA. The structural complexity of cross-linking and the diversity of proteins susceptible to DPC formation represents significant challenges to studying the biological consequence of these adducts. In the first part of the thesis, we identified the protein constituents, structural characterized and quantified, and investigated the repair mechanism of bis-electrophile (Chapter 2) and reactive oxygen species (ROS, Chapters 3 and 4)-induced DPCs. In Chapter 2, we investigated DPC formation after exposure to N,N-bis-(2-chloroethyl)-phosphorodiamidic acid (phosphoramide mustard, PM) and N,N-bis-(2-chloroethyl)-ethylamine (nornitrogen mustard, NOR), the two biologically active metabolites of the antitumor agent cyclophosphamide. A mass spectrometry-based proteomics approach was employed to characterize the protein constituents of PM- and NOR-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. HPLC-ESI+-MS/MS analysis of proteolytic digests of DPC-containing DNA from NOR-treated cells revealed a concentration-dependent formation of N-[2-[cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]amine (Cys-NOR-N7G) conjugates, confirming that it cross-links cysteine thiols of proteins to the N-7 position of guanines in DNA. A sensitive and accurate Cys-NOR-N7G isotope dilution tandem mass spectrometry assay was developed to quantify PM-induced DPC formation and repair in mammalian cells proficient or deficient in a DNA repair pathway. In Chapters 3, we employed the model of left anterior descending artery ligation/reperfusion surgery in rat to show that ischemia/reperfusion injury is associated with the formation of hydroxyl radical-induced DNA-protein cross-links (DPCs) in cardiomyocytes. Mass spectrometry based experiments revealed that these conjugates were formed by a free radical mechanism and involved thymidine residues of DNA and tyrosine side chains of proteins (dT-Tyr). Quantitative proteomics experiments utilizing Tandem mass tags (TMT) revealed that radical-induced DPC formation increase after LAD-ligation/reperfusion compared to the control sham surgery. Using the developed dT-Tyr nanoLC-ESI+-MS/MS assay, we investigated the role of the metalloprotease Spartan (SPRTN) in the repair of radical-induced DPCs (Chapter 4). Analysis of the brain, liver, heart, and kidneys of wild type (SPRTN+/+) and hypomorphic (SPRTN f/-) mice revealed a 1.5 – 2-fold increase in dT-Tyr in the hypomorphic mice, providing direct evidence that Spartan plays a role in the repair of radical-induced DPCs. Finally, we investigated the formation of formamidopyrimidine (FAPy) adducts after exposure to 3,4-epoxybutene, an epoxide metabolite of the known carcinogen 1,3-butadiene (Chapter 5). We successfully synthesized and structurally characterized a novel BD-induced DNA adduct EB-FAPy-dG, and developed a sensitive isotope dilution tandem mass spectrometry assay for its detection in vitro and in cells. To our knowledge, this is the first report of a BD-induced FAPy adduct, and future studies will examine whether BD-induced FAPy adducts In summary, during the course of this Thesis, we utilized mass spectrometry-based proteomics techniques to identify the proteins susceptible to PM- and ROS-induced DPC formation. After structurally characterizing the atomic connectivity of these adduces, we developed sensitive and accurate isotope dilution tandem mass spectrometry assays to perform absolute quantitation of PM- and ROS-induced DPC formation in cells and tissues. These assays were further utilized to begin investigating the repair mechanism of DPCs in cells and tissues, including providing direct evidence that the metalloprotease Spartan is involved in the repair of radical-induced DPCs. Finally, we detected EB-FAPy-dG formation in vitro and in vivo, the first evidence of 1,3-butadiene induced formamidopyrimidine formation

    Cross-linking of the DNA repair protein O6-alkylguanine DNA alkyltransferase to DNA in the presence of cisplatin

    No full text
    © 20201,1,2,2-cis-diamminedichloroplatinum (II) (cisplatin) is a chemotherapeutic agent widely used in the clinic to treat various cancers. The antitumor activity of cisplatin is generally attributed to its ability to form intrastrand and interstrand DNA-DNA cross-links via sequential platination of two nucleophilic sites within the DNA duplex. However, cisplatin also induces DNA- protein lesions (DPCs) that may contribute to its biological effects due to their ability to block DNA replication and transcription. We previously reported that over 250 nuclear proteins including high mobility group proteins, histone proteins, and elongation factors formed DPCs in human HT1080 cells treated with cisplatin (Ming et al. Chem. Res. Toxicol. 2017, 30, 980–995). Interestingly, cisplatin-induced DNA-protein conjugates were reversed upon heating, by an unknown mechanism. In the present work, DNA repair protein O6-alkylguanine DNA alkyltransferase (AGT) was used as a model to investigate the molecular details of cisplatin-mediated DNA-protein cross-linking and to establish the mechanism of their reversal. We found that AGT is readily cross-linked to DNA in the presence of cisplatin. HPLC-ESI+-MS/MS sequencing of tryptic peptides originating from dG-Pt-AGT complexes revealed that the cross-linking occurred at six sites within this protein including Glu110, Lys125, Cys145, His146, Arg147, and Cys150. Cisplatin-induced Lys-Gua cross-links (1,1-cis-diammine-2-(5-amino-5-carboxypentyl)amino-2-(2'-deoxyguanosine-7-yl)-platinum(II) (dG-Pt-Lys) were detected by HPLC-ESI+-MS/MS of total digests of modified protein in comparison with the corresponding authentic standard. Upon heating, dG-Pt-AGT complexes were subject to platination migration from protein to DNA, forming cis-[Pt(NH3)2{d(GpG)}] cross-links which were detected by HPLC-ESI+-MS/MS. Our results provide a new insight into the mechanism of cisplatin-mediated DNA-protein cross-linking and their dynamic equilibrium with the corresponding DNA-DNA lesions11Nsciescopu

    Alkylation of nucleobases by 2-chloro-N,N-diethylethanamine hydrochloride (CDEAH) sensitizes PARP1-deficient tumors

    No full text
    Targeting BRCA1-and BRCA2-deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in BRCA or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro-N,N-diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills PARP1-and xeroderma pigmentosum A-deficient cells. CDEAH is a monofunctional alkylating agent that preferentially alkylates guanine nucleobases, forming DNA adducts that can be removed from DNA by either a PARP1-dependent base excision repair or nucleotide excision repair. Treatment of PARP1-deficient cells leads to the formation of strand breaks, an accumulation of cells in S phase and activation of the DNA damage response. Furthermore, CDEAH selectively inhibits PARP1-deficient xenograft tumor growth compared to isogenic PARP1-proficient tumors. Collectively, we report the discovery of an alkylating agent inducing DNA damage that requires PARP1 activity for repair and acts synergistically with PARPi
    corecore