61 research outputs found

    A photoemission study of interfaces between organic semiconductors and Co as well as Al<sub>2</sub>O<sub>3</sub>/Co contacts

    Get PDF
    We have studied the energy-level alignment of ex situ, acetone cleaned Co and Al2O3/Co contacts to the organic semiconductors pentacene and rubrene by combined X-ray and ultraviolet photoemission spectroscopy. Our results demonstrate that the work function under these conditions is smaller than in the in situ cleaned, atomically clean case. Moreover, the studied interfaces are characterized by very small, short range interfaces dipoles and substantial injection barriers for holes. This represents essential information in view of their use in organic spintronic devices. Our core-level photoemission spectroscopy measurements rule out chemical reactions

    New insight into the physics of iron pnictides from optical and penetration depth data

    Full text link
    We report theoretical values for the unscreened plasma frequencies Omega_p of several Fe pnictides obtained from DFT based calculations within the LDA and compare them with experimental plasma frequencies obtained from reflectivity data. The sizable renormalization observed for all considered compounds points to the presence of many-body effects beyond the LDA. From the large empirical background dielectric constant of about 12-15, we estimate a large arsenic polarizability of about 9.5 +- 1.2 Angstroem^3 where the details depend on the polarizabilities of the remaining ions taken from the literature. This large polarizability can significantly reduce the value of the Coulomb repulsion U_d about 4 eV on iron known from iron oxides to a level of 2 eV or below. In general, this result points to rather strong polaronic effects as suggested by G.A. Sawatzky et al., in Refs. arXiv:0808.1390 and arXiv:0811.0214 (Berciu et al.). Possible consequences for the conditions of a formation of bipolarons are discussed, too. From the extrapolated muon spin rotation penetration depth data at T= 0 and the experimental Omega_p we estimate the total coupling constant lambda_tot for the el-boson interaction within the Eliashberg-theory adopting a single band approximation. For LaFeAsO_0.9F_0.1 a weak to intermediately strong coupling regime and a quasi-clean limit behaviour are found. For a pronounced multiband case we obtain a constraint for various intraband coupling constants which in principle allows for a sizable strong coupling in bands with either slow electrons or holes.Comment: 34 pages, 10 figures, submitted to New Journal of Physics (30.01.2009

    Optical Study of LaO_0.9F_0.1FeAs: Evidence for a Weakly Coupled Superconducting State

    Full text link
    We have studied the reflectance of the recently discovered superconductor LaO_0.9F0.FeAs in a wide energy range from the far infrared to the visible regime. We report on the observation of infrared active phonons, the plasma edge (PE) and possible interband transitions. On the basis of this data and the reported in-plane penetration depth lambda_L(0) about 254 nm [H. Luetkens et al., Phys. Rev. Lett. v. 101, 0970009 (2008)] a disorder sensitive relatively small value of the total electron electron-boson coupling constant lambda_tot=lambda_e-ph+lambda_e-sp ~ 0.6 +- 0.35 can be estimated adopting an effective single-band picture.Comment: Changed title, updated references, final published versio

    High-Field Pauli-Limiting Behavior and Strongly Enhanced Upper Critical Magnetic Fields near the Transition Temperature of an Arsenic-Deficient LaO_0.9F_0.1FeAs_(1-\delta) Superconductor

    Full text link
    We report upper critical field B_c2(T) data for disordered (arsenic-deficient) LaO_0.9F_0.1FeAs_(1-delta) in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 about -5.4 T/K to -6.6 T/K near Tc = 28.5 K the T-dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) about 63-68 T. Our results are discussed in terms of disorder effects within conventional and unconventional superconducting pairings.Comment: Change of the title as suggested by the Editors, one author added, typos corrected, references updated, final published versio

    Phase II trial of temsirolimus for relapsed/refractory primary CNS lymphoma

    Get PDF
    Purpose: In this phase II study (NCT00942747), temsirolimus was tested in patients with relapsed or refractory primary CNS lymphoma (PCNSL). Patients and Methods: Immunocompetent adults with histologically confirmed PCNSL after experiencing high-dose methotrexate-based chemotherapy failure who were not eligible for or had experienced high-dose chemotherapy with autologous stem-cell transplant failure were included. The first cohort (n = 6) received 25 mg temsirolimus intravenously once per week. All consecutive patients received 75 mg intravenously once per week. Results: Thirty-seven eligible patients (median age, 70 years) were included whose median time since their last treatment was 3.9 months (range, 0.1 to 14.6 months). Complete response was seen in five patients (13.5%), complete response unconfirmed in three (8%), and partial response in 12 (32.4%) for an overall response rate of 54%. Median progression-free survival was 2.1 months (95% CI, 1.1 to 3.0 months). The most frequent Common Toxicity Criteria ≥ 3° adverse event was hyperglycemia in 11 (29.7%) patients, thrombocytopenia in eight (21.6%), infection in seven (19%), anemia in four (10.8%), and rash in three (8.1%). Fourteen blood/CSF pairs were collected in nine patients (10 pairs in five patients in the 25-mg cohort and four pairs in four patients in the 75-mg cohort). The mean maximum blood concentration was 292 ng/mL for temsirolimus and 37.2 ng/mL for its metabolite sirolimus in the 25-mg cohort and 484 ng/mL and 91.1 ng/mL, respectively, in the 75-mg cohort. Temsirolimus CSF concentration was 2 ng/mL in one patient in the 75-mg cohort; in all others, no drug was found in their CSF. Conclusion: Single-agent temsirolimus at a weekly dose of 75 mg was found to be active in relapsed/refractory patients with PCNSL; however, responses were usually short lived

    Probing the molecular orbitals of FePc near the chemical potential using electron energy-loss spectroscopy

    No full text
    We have studied the electronic structure of iron phthalocyanine (FePc) films at low temperature using electron energy-loss spectroscopy. The electronic excitation spectrum of FePc is rather complex and comprises both π-π* transitions of the phthalocyanine ligand and transitions that involve the Fe 3d orbitals. The C 1s core excitations provide so far unidentified information on the molecular orbitals. They demonstrate that the Fe 3d orbital with eg symmetry is energetically located in between the highest occupied and the lowest unoccupied ligand state and that it is not fully occupied

    A photoemission study of interfaces between organic semiconductors and Co as well as Al2O3/Co contacts

    Get PDF
    We have studied the energy-level alignment of ex situ, acetone cleaned Co and Al2O3/Co contacts to the organic semiconductors pentacene and rubrene by combined X-ray and ultraviolet photoemission spectroscopy. Our results demonstrate that the work function under these conditions is smaller than in the in situ cleaned, atomically clean case. Moreover, the studied interfaces are characterized by very small, short range interfaces dipoles and substantial injection barriers for holes. This represents essential information in view of their use in organic spintronic devices. Our core-level photoemission spectroscopy measurements rule out chemical reactions
    corecore