52 research outputs found

    Testing of worn face mask and saliva for SARS-CoV-2

    Get PDF
    BackgroundExhaled SARS-CoV-2 can be detected on face masks. We compared tests for SARS-CoV-2 RNA on worn face masks and matched saliva samples.MethodsWe conducted this prospective, observational, case-control study between December 2021 and March 2022. Cases comprised 30 in-center hemodialysis patients with recent COVID-19 diagnosis. Controls comprised 13 hemodialysis patients and 25 clinic staff without COVID-19 during the study period and the past 2 months. Disposable 3-layer masks were collected after being worn for 4 hours together with concurrent saliva samples. ThermoFisher COVID-19 Combo Kit (A47814) was used for RT-PCR testing.ResultsMask and saliva testing specificities were 99% and 100%, respectively. Test sensitivity was 62% for masks, and 81% for saliva (p = 0.16). Median viral RNA shedding duration was 11 days and longer in immunocompromised versus non-immunocompromised patients (22 vs. 11 days, p = 0.06, log-rank test).ConclusionWhile SARS-CoV-2 testing on worn masks appears to be less sensitive compared to saliva, it may be a preferred screening method for individuals who are mandated to wear masks yet averse to more invasive sampling. However, optimized RNA extraction methods and automated procedures are warranted to increase test sensitivity and scalability. We corroborated longer viral RNA shedding in immunocompromised patients

    Insulin Treatment Attenuates Renal ADAM17 and ACE2 Shedding in Akita Diabetic Mice

    No full text
    Angiotensin-converting enzyme 2 (ACE2) is located in several tissues and is highly expressed in renal proximal tubules, where it degrades the vasoconstrictor angiotensin II (ANG II) to ANG-(1-7). Accumulating evidence supports protective roles of ACE2 in several disease states, including diabetic nephropathy. A disintegrin and metalloprotease (ADAM) 17 is involved in the shedding of several transmembrane proteins, including ACE2. Our previous studies showed increased renal ACE2, ADAM17 expression, and urinary ACE2 in type 2 diabetic mice (Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM. PLoS One 8: e62833, 2013). The aim of the present study was to determine the effect of insulin on ACE2 shedding and ADAM17 in type 1 diabetic Akita mice. Results demonstrate increased renal ACE2 and ADAM17 expression and increased urinary ACE2 fragments (≈70 kDa) and albumin excretion in diabetic Akita mice. Immunostaining revealed colocalization of ACE2 with ADAM17 in renal tubules. Renal proximal tubular cells treated with ADAM17 inhibitor showed reduced ACE2 shedding into the media, confirming ADAM17-mediated shedding of ACE2. Treatment of Akita mice with insulin implants for 20 wk normalized hyperglycemia and decreased urinary ACE2 and albumin excretion. Insulin also normalized renal ACE2 and ADAM17 but had no effect on tissue inhibitor of metalloproteinase 3 (TIMP3) protein expression. There was a positive linear correlation between urinary ACE2 and albuminuria, blood glucose, plasma creatinine, glucagon, and triglycerides. This is the first report showing an association between hyperglycemia, cardiovascular risk factors, and increased shedding of urinary ACE2 in diabetic Akita mice. Urinary ACE2 could be used as a biomarker for diabetic nephropathy and as an index of intrarenal ACE2 status

    Loss of Prolyl Carboxypeptidase in Two-Kidney, One-Clip Goldblatt Hypertensive Mice

    No full text
    It is well documented that angiotensin (Ang) II contributes to kidney disease progression. The protease prolyl carboxypeptidase (PRCP) is highly expressed in the kidney and may be renoprotective by degrading Ang II to Ang-(1-7). The aim of the study was to investigate whether renal PRCP protein expression and activity are altered in two-kidney, one-clip (2K1C) Goldblatt hypertensive mice. Left renal artery was constricted by using 0.12 mm silver clips. Blood pressure was measured using telemetry over the eleven weeks of study period and revealed an immediate increase in 2K1C animals during the first week of clip placement which was followed by a gradual decrease to baseline blood pressure. Similarly, urinary albumin excretion was significantly increased one week after 2K1C and returned to baseline levels during the following weeks. At 2 weeks and at the end of the study, renal pathologies were exacerbated in the 2K1C model as revealed by a significant increase in mesangial expansion and renal fibrosis. Renal PRCP expression and activity were significantly reduced in clipped kidneys. Immunofluorescence revealed the loss of renal tubular PRCP but not glomerular PRCP. In contrast, expression of prolyl endopeptidase, another enzyme capable of converting Ang II into Ang-(1-7), was not affected, while angiotensin converting enzyme was elevated in unclipped kidneys and renin was increased in clipped kidneys. Results suggest that PRCP is suppressed in 2K1C and that this downregulation may attenuate renoprotective effects via impaired Ang II degradation by PRCP

    Insulin Treatment Attenuates Renal ADAM17 and ACE2 Shedding in Akita Diabetic Mice

    No full text
    Angiotensin-converting enzyme 2 (ACE2) is located in several tissues and is highly expressed in renal proximal tubules, where it degrades the vasoconstrictor angiotensin II (ANG II) to ANG-(1-7). Accumulating evidence supports protective roles of ACE2 in several disease states, including diabetic nephropathy. A disintegrin and metalloprotease (ADAM) 17 is involved in the shedding of several transmembrane proteins, including ACE2. Our previous studies showed increased renal ACE2, ADAM17 expression, and urinary ACE2 in type 2 diabetic mice (Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM. PLoS One 8: e62833, 2013). The aim of the present study was to determine the effect of insulin on ACE2 shedding and ADAM17 in type 1 diabetic Akita mice. Results demonstrate increased renal ACE2 and ADAM17 expression and increased urinary ACE2 fragments (≈70 kDa) and albumin excretion in diabetic Akita mice. Immunostaining revealed colocalization of ACE2 with ADAM17 in renal tubules. Renal proximal tubular cells treated with ADAM17 inhibitor showed reduced ACE2 shedding into the media, confirming ADAM17-mediated shedding of ACE2. Treatment of Akita mice with insulin implants for 20 wk normalized hyperglycemia and decreased urinary ACE2 and albumin excretion. Insulin also normalized renal ACE2 and ADAM17 but had no effect on tissue inhibitor of metalloproteinase 3 (TIMP3) protein expression. There was a positive linear correlation between urinary ACE2 and albuminuria, blood glucose, plasma creatinine, glucagon, and triglycerides. This is the first report showing an association between hyperglycemia, cardiovascular risk factors, and increased shedding of urinary ACE2 in diabetic Akita mice. Urinary ACE2 could be used as a biomarker for diabetic nephropathy and as an index of intrarenal ACE2 status

    Mass Spectrometry for the Molecular Imaging of Angiotensin Metabolism in Kidney

    No full text
    To better understand the tissue distribution and activity of enzymes involved in angiotensin II (Ang II) processing, we developed a novel molecular imaging method using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Mouse kidney sections (12 μm) were incubated with 10–1,000 μmol/l Ang II for 5–15 min at 37°C. The formed peptides Ang III and Ang-(1–7) were identified by MALDI-TOF/TOF. A third metabolite, Ang-(1–4), was generated from further degradation of Ang-(1–7). Enzymatic processing of Ang II was dose and time dependent and absent in heat-treated kidney sections. Distinct spatial distribution patterns (pseudocolor images) were observed for the peptides. Ang III was localized in renal medulla, whereas Ang-(1–7)/Ang-(1–4) was present in cortex. Regional specific peptide formation was confirmed using microdissected cortical and medullary biopsies. In vitro studies with recombinant enzymes confirmed activity of peptidases known to generate Ang III or Ang-(1–7) from Ang II: aminopeptidase A (APA), Ang-converting enzyme 2 (ACE2), prolyl carboxypeptidase (PCP), and prolyl endopeptidase (PEP). Renal medullary Ang III generation was blocked by APA inhibitor glutamate phosphonate. The ACE2 inhibitor MLN-4760 and PCP/PEP inhibitor Z-pro-prolinal reduced cortical Ang-(1–7) formation. Our results establish the power of MALDI imaging as a highly specific and information-rich analytical technique that will further aid our understanding of the role and site of Ang II processing in cardiovascular and renal pathologies

    Novel Role of Aminopeptidase-A in Angiotensin-(1–7) Metabolism Post Myocardial Infarction

    No full text
    Aminopeptidase-A (APA) is a less well-studied enzyme of the renin-angiotensin system. We propose that it is involved in cardiac angiotensin (ANG) metabolism and its pathologies. ANG-(1-7) can ameliorate remodeling after myocardial injury. The aims of this study are to (1) develop mass spectrometric (MS) approaches for the assessment of ANG processing by APA within the myocardium; and (2) investigate the role of APA in cardiac ANG-(1-7) metabolism after myocardial infarction (MI) using sensitive MS techniques. MI was induced in C57Bl/6 male mice by ligating the left anterior descending (LAD) artery. Frozen mouse heart sections (in situ assay) or myocardial homogenates (in vitro assay) were incubated with the endogenous APA substrate, ANG II. Results showed concentration- and time-dependent cardiac formation of ANG III from ANG II, which was inhibited by the specific APA inhibitor, 4-amino-4-phosphonobutyric acid. Myocardial APA activity was significantly increased 24 h after LAD ligation (0.82 ± 0.02 vs. 0.32 ± 0.02 ρmol·min(-1)·μg(-1), MI vs. sham, P \u3c 0.01). Both MS enzyme assays identified the presence of a new peptide, ANG-(2-7), m/z 784, which accumulated in the MI (146.45 ± 6.4 vs. 72.96 ± 7.0%, MI vs. sham, P \u3c 0.05). Use of recombinant APA enzyme revealed that APA is responsible for ANG-(2-7) formation from ANG-(1-7). APA exhibited similar substrate affinity for ANG-(1-7) compared with ANG II {Km (ANG II) = 14.67 ± 1.6 vs. Km [ANG-(1-7)] = 6.07 ± 1.12 μmol/l, P \u3c 0.05}. Results demonstrate a novel role of APA in ANG-(1-7) metabolism and suggest that the upregulation of APA, which occurs after MI, may deprive the heart of cardioprotective ANG-(1-7). Thus APA may serve as a potentially novel therapeutic target for management of tissue remodeling after MI
    corecore