9 research outputs found

    Preliminary AIT plan for the FSM segments of GMT

    No full text
    The Fast Steering Secondary Mirror (FSM) for the Giant Magellan Telescope (GMT) will have seven 1.05 m diameter circular segments and rapid tip-tilt capability to stabilize images under wind loading. In this paper, we report on the assembly, integration, and test (AIT) plan for this complex opto-mechanical system. Each fast-steering mirror segment has optical, mechanical, and electrical components that support tip-tilt capability for fine co-alignment and fast guiding to attenuate wind shake and jitter. The components include polished and lightweighted mirror, lateral support, axial support assembly, seismic restraints, and mirror cell. All components will be assembled, integrated and tested to the required mechanical and optical tolerances following a concrete plan. Prior to assembly, fiducial references on all components and subassemblies will be located by three-dimensional coordinate measurement machines to assist with assembly and initial alignment. All electronics components are also installed at designed locations. We will integrate subassemblies within the required tolerances using precision tooling and jigs. Performance tests of both static and dynamic properties will be conducted in different orientations, including facing down, horizontal pointing, and intermediate angles using custom tools. In addition, the FSM must be capable of being easily and safely removed from the top-end assemble and recoated during maintenance. In this paper, we describe preliminary AIT plan including our test approach, equipment list, and test configuration for the FSM segments.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Experimental study of breakaway system for the fast-steering secondary mirror prototype of GMT

    No full text
    The Fast-steering Secondary Mirror (FSM) of Giant Magellan Telescope (GMT) consists of seven 1.1 m diameter circular segments with an effective diameter of 3.2 m, which are conjugated 1:1 to the seven 8.4 m segments of the primary. Each FSM segment contains a tip-tilt capability for fast guiding to attenuate telescope wind shake and mount control jitter by adapting axial support actuators. Breakaway System (BAS) is installed for protecting FSM from seismic overload or other unknown shocks in the axial support. When an earthquake or other unknown shocks come in, the springs in the BAS should limit the force along the axial support axis not to damage the mirror. We tested a single BAS in the lab by changing the input force to the BAS in a resolution of 10 N and measuring the displacement of the system. In this paper, we present experimental results from changing the input force gradually. We will discuss the detailed characteristics of the BAS in this report.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Development status of the fast-steering secondary mirror of GMT

    No full text
    The Giant Magellan Telescope (GMT) will be equipped with two Gregorian secondary mirrors; a fast-steering secondary mirror (FSM) for seeing-limited operations and an adaptive secondary mirror (ASM) for adaptive optics observing modes. The FSM has an effective diameter of 3.2 m and is comprised of seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary mirror. Each FSM segment has a tip-tilt capability for fast guiding to attenuate telescope wind shake and jitter. The FSM is mounted on a two-stage positioning system; a macro-cell that positions the entire FSM segments as an assembly and seven hexapod actuators that position and drive the individual FSM segments. In this paper, we present a technical overview of the FSM development status. More details in each area of development will be presented in other papers by the FSM team.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore