4 research outputs found

    The generalized MIC-Kepler system

    Full text link
    This paper deals with dynamical system that generalizes the MIC-Kepler system. It is shown that the Schr\"{o}dinger equation for this generalized MIC-Kepler system can be separated in spherical and parabolic coordinates. The spectral problem in spherical and parabolic coordinates is solved.Comment: 8 page

    On two superintegrable nonlinear oscillators in N dimensions

    Full text link
    We consider the classical superintegrable Hamiltonian system given by H=T+U=p2/2(1+λq2)+ω2q2/2(1+λq2)H=T+U={p^2}/{2(1+\lambda q^2)}+{{\omega}^2 q^2}/{2(1+\lambda q^2)}, where U is known to be the "intrinsic" oscillator potential on the Darboux spaces of nonconstant curvature determined by the kinetic energy term T and parametrized by {\lambda}. We show that H is Stackel equivalent to the free Euclidean motion, a fact that directly provides a curved Fradkin tensor of constants of motion for H. Furthermore, we analyze in terms of {\lambda} the three different underlying manifolds whose geodesic motion is provided by T. As a consequence, we find that H comprises three different nonlinear physical models that, by constructing their radial effective potentials, are shown to be two different nonlinear oscillators and an infinite barrier potential. The quantization of these two oscillators and its connection with spherical confinement models is briefly discussed.Comment: 11 pages; based on the contribution to the Manolo Gadella Fest-60 years-in-pucelandia, "Recent advances in time-asymmetric quantum mechanics, quantization and related topics" hold in Valladolid (Spain), 14-16th july 201

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes
    corecore