36 research outputs found

    Anti-acne activity of Garcinia mangostana L.: A review

    Get PDF
    Garcinia mangostana L. or mangosteen of the Clusiaceae has traditionally been employed as medicinal drugs for decades. A plethora of compounds are responsible for a wide range of medicinal properties and biological activities. The ethanol extract of the mangosteen rind has been found to be anti-inflammatory, antioxidant and anti-acne-causing bacteria. Many research studies have confirmed its potency, with the ethanol extract of the rind being able to inhibit pro-inflammatory cytokines (TNF-?) at relatively low concentration. DPPH assay also revealed its potent radical scavenging activity. The compound responsible for the antibacterial activity, a-mangostin, was especially potent and one of the compounds responsible for the anti-bacterial activity

    Effect of Three Natural Polymers on the Release Kinetics of Propranolol HCl from Hydrophilic Swellable Matrices I: Matrices Containing Microcrystalline Cellulose

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āļāļĨāđ„āļāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļĒāļēāļ–āļđāļāļ„āļ§āļšāļ„āļļāļĄ āđ‚āļ”āļĒāļāļēāļĢāļĢāļžāļ­āļ‡āļ•āļąāļ§āđāļĨāļ°āļāļēāļĢāļāļĢāđˆāļ­āļ™āļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āđāļĨāļ°āļāļēāļĢāļĨāļ°āļĨāļēāļĒ/āļāļēāļĢāđāļžāļĢāđˆāļŠāļ­āļ‡āļĒāļē āļāļēāļĢāļĻāļķāļāļĐāļēāļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļĻāđŒ āđ€āļžāļ·āđˆāļ­āļ•āļĢāļ§āļˆāļŦāļēāļœāļĨāļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ˜āļĢāļĢāļĢāļĄāļŠāļēāļ•āļī 3 āļŠāļ™āļīāļ” āđ„āļ”āđ‰āđāļāđˆ āđāļ‹āļ™āđāļ˜āļ™āļāļąāļĄ (XG) āđ€āļ›āļ„āļ•āļīāļ™ (P) āđāļĨāļ°āđ€āļĄāļ·āļ­āļāļāļĢāļ°āđ€āļˆāļĩāđŠāļĒāļšāđ€āļ‚āļĩāļĒāļ§ (OM) āļ—āļĩāđˆāļĄāļĩāļ•āđˆāļ­āļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļžāļĢāļ­āļžāļĢāļēāļ™āļ­āļĨāļ­āļĨāđ„āļŪāđ‚āļ”āļĢāļ„āļĨāļ­āđ„āļĢāļ”āđŒ (PRH) āđƒāļ™āļŸāļ­āļŠāđ€āļŸāļŠāļšāļąāļŸāđ€āļŸāļ­āļĢāđŒ pH 6.8 āļˆāļēāļāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāļŠāļ­āļšāļ™āđ‰āļģ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āđāļ•āđˆāļĨāļ°āļ•āļģāļĢāļąāļšarfarināļĄāļĩ PRH 80 mg āļ—āļĩāđˆāđāļĄāļŠāđāļŸāļĢāļ„āļŠāļąāđˆāļ™ (mf) āđ€āļ—āđˆāļēāļāļąāļš 0.22 āļŠāļģāļŦāļĢāļąāļšāļ•āļģāļĢāļąāļšāļ—āļĩāđˆāđƒāļŠāđ‰ P āļŦāļĢāļ·āļ­ OM āđāļ•āđˆāļĨāļ°āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļˆāļ°āļ–āļđāļāđƒāļŠāđ‰āļ—āļĩāđˆ mf = 0.30, 0.45, 0.60 āđāļĨāļ° 0.75 āļŠāđˆāļ§āļ™āļ•āļģāļĢāļąāļšāļ—āļĩāđˆāđƒāļŠāđ‰ XG āļˆāļ°āļ–āļđāļāđƒāļŠāđ‰āļ—āļĩāđˆ mf = 0.15, 0.30, 0.45 and 0.60  āđ€āļ•āļīāļĄāđ„āļĄāđ‚āļ„āļĢāļ„āļĢāļīāļŠāļ•āļ­āļĨāļĨāļĩāļ™ āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠ (MCC) āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļ™āđ‰āļģāļŦāļ™āļąāļāļĒāļēāđ€āļĄāđ‡āļ”āļ„āļ‡āļ—āļĩāđˆāļ—āļĩāđˆ 360 mg āđ€āļ•āļĢāļĩāļĒāļĄāļĒāļēāđ€āļĄāđ‡āļ”āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļ•āļ­āļāļ­āļąāļ”āđ‚āļ”āļĒāļ•āļĢāļ‡ āđƒāļŠāđ‰āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ—āļ”āļŠāļ­āļšāļāļēāļĢāļĨāļ°āļĨāļēāļĒ āđāļšāļš I āļ‚āļ­āļ‡ USP āļĻāļķāļāļĐāļēāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļ•āļąāļ§āļĒāļē āđƒāļ™āļŸāļ­āļŠāđ€āļŸāļŠāļšāļąāļŸāđ€āļŸāļ­āļĢāđŒ pH 6.8 āļˆāļēāļāđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāđāļ•āđˆāļĨāļ°āļ•āļģāļĢāļąāļš āļ āļēāļĒāđƒāļ™ 24 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļžāļšāļ§āđˆāļēāļ•āļąāļ§āļĒāļēāļ—āļĩāđˆāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāđƒāļ”āđ†  āļ‚āļķāđ‰āļ™āļāļąāļšāļĢāļēāļāļ—āļĩāđˆāļŠāļ­āļ‡āļ‚āļ­āļ‡āđ€āļ§āļĨāļē āđ‚āļ”āļĒāđ€āļ›āđ‡āļ™āđ„āļ›āļ•āļēāļĄāļŠāļĄāļāļēāļĢāļ‚āļ­āļ‡āļŪāļīāļāļđāļŠāļī āļˆāļēāļāļŠāļĄāļāļēāļĢāļ”āļąāļ‡āļāļĨāđˆāļēāļ§ āļāļēāļĢāļ­āļ­āļāļĪāļ—āļ˜āļīāđŒāļ™āļēāļ™āļ‚āļ­āļ‡āļ•āļąāļ§āļĒāļēāļˆāļēāļāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāđƒāļ”āđ† āļ‚āļķāđ‰āļ™āļāļąāļšāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļĨāļ”āļ„āđˆāļēāļ„āļ‡āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒ (k) āđāļĨāļ°āļāļēāļĢāļžāļēāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī (Q0) āļ™āļģāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āđ€āļžāļ·āđˆāļ­āļ—āļ”āļŠāļ­āļšāļ™āļąāļĒāļŠāļģāļ„āļąāļāļ‚āļ­āļ‡ k āđāļĨāļ° Q0 āļ‚āļ­āļ‡āļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāđāļ•āđˆāļĨāļ°āļ•āļģāļĢāļąāļš āļŠāļģāļŦāļĢāļąāļš k āļžāļšāļ§āđˆāļē (i) āđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰ XG āļ—āļĩāđˆ mf = 0.15 - 0.60 āđāļĨāļ° P āļ—āļĩāđˆ mf = 0.30 - 0.75 āļāļēāļĢāđ€āļžāļīāđˆāļĄ mf āļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āļˆāļ°āļĨāļ”āļ„āđˆāļē k āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ (ii) āđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰ OM āļ—āļĩāđˆ mf = 0.30 - 0.75 āļāļēāļĢāđ€āļžāļīāđˆāļĄ mf āļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āļŠāļēāļĄāļēāļĢāļ–āļĨāļ” Q0 āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āđ€āļ›āđ‡āļ™āļ—āļĩāđˆāļ™āđˆāļēāļŠāļąāļ‡āđ€āļāļ• āđāļ•āđˆāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļ„āđˆāļē k āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ āļŠāļģāļŦāļĢāļąāļš Q0 āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļŠāļēāļĄāļēāļĢāļ–āļˆāļąāļ”āļ­āļąāļ™āļ”āļąāļšāļāļēāļĢāļĨāļ”āļ„āđˆāļēāļ”āļąāļ‡āļāļĨāđˆāļēāļ§ āļ„āļ·āļ­āļ„āđˆāļēāļ‚āļ­āļ‡ XG > OM >> P  āđ€āļĄāļ·āđˆāļ­āļ™āļąāļšāļ—āļąāđ‰āļ‡āļāļēāļĢāļĨāļ” k āđāļĨāļ° Q0 āļ‚āļĩāļ”āļāļēāļĢāļ­āļ­āļāļĪāļ—āļ˜āļīāđŒāļ™āļēāļ™āļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ‚āļ­āļ‡ XG > OM >> P āļŠāļĢāļļāļ›: āļĄāļĩāļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āđāļĄāđˆāđāļšāļšāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļ•āļąāļ§āļĒāļēāļāļąāļšāļ‚āđ‰āļ­āļĄāļđāļĨāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļ•āļąāļ§āļĒāļē āđ€āļžāļ·āđˆāļ­āļ­āļ˜āļīāļšāļēāļĒāļāļĨāđ„āļāđāļĨāļ°āļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļžāļĢāļ­āļžāļĢāļēāļ™āļ­āļĨāļ­āļĨāđ„āļŪāđ‚āļ”āļĢāļ„āļĨāļ­āđ„āļĢāļ”āđŒ āļ„āļģāļŠāļģāļ„āļąāļ: āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāļžāļ­āļ‡āļ•āļąāļ§āļ—āļĩāđˆāļŠāļ­āļšāļ™āđ‰āļģ  āđ€āļĄāļ·āļ­āļāļāļĢāļ°āđ€āļˆāļĩāđŠāļĒāļšāđ€āļ‚āļĩāļĒāļ§ āļžāļĢāļ­āļžāļĢāļēāļ™āļ­āļĨāļ­āļĨāđ„āļŪāđ‚āļ”āļĢāļ„āļĨāļ­āđ„āļĢāļ”āđŒÂ  āđ€āļ›āļ„āļ•āļīāļ™ āđāļ‹āļ™āđāļ˜āļ™āļāļąāļĄAbstract Objective: The mechanism of drug release is controlled by polymer swelling and erosion, and drug dissolution/diffusion. This study aimed to examine the effects of 3 natural polymers, i.e., xanthan gum (XG), pectin (P), and okra mucilage (OM) on the release kinetics of propranolol hydrochloride (PRH) in pH 6.8 phosphate buffer from hydrophilic matrices. Methods: Each formulations contained 80 mg PRH at a mass fraction (mf) of 0.22. For formulas using P or OM, each polymer was used at the mf of 0.30, 0.45, 0.60 and 0.75; while those using XG, at the mf of 0.15, 0.30, 0.45 and 0.60. Microcrystalline cellulose (MCC) was added to make the the constant tablet weight of 360 mg. All tablets were prepared by direct compaction, and USP dissolution apparatus I was used to study the drug release in pH 6.8 phosphate buffer from matrices within 24 h. Results: According to Higuchi equation, the results showed that the amount of drug released from matrices of all formulas depended upon the square root of time. From Higuchi equation, a retardability for drug release of any polymers depended on an ability to decrease both the kinetic rate constant (k), and natural convection (Q0). An analysis of variance (ANOVA, P-value < 0.01) was performed for various k and Q0. For k, the results showed that: (i) when XG with mf of 0.15 -0.60 and P with mf of 0.30 -0.75 were used, the increased mf of polymer could decrease k significantly, and (ii) when OM with mf of 0.30 - 0.75 were used, the increased mf could only decrease Q0 remarkably, but could not significantly decrease k. For Q0, the results indicated that the efficacy to lower Q0 could be ranked as that of XG > OM >> P. Based on the ability to lower k and Q0, the sustainability of polymers for drug release could be ranked as that of XG > OM >> P. Conclusion: Various drug release models were applied to drug release data in order to explain the release mechanisms and kinetics of propranolol hydrochloride. Keywords: hydrophilic swellable matrix, okra mucilage, propranolol hydrochloride, pectin, xanthan gu

    Total Phenolics and Total Flavonoids Contents and Hypnotic Effect in Mice of Ziziphus mauritiana

    Get PDF
    The seeds of Ziziphus mauritiana Lam. have been traditionally used for treatment of various complications including insomnia and anxiety. They are popularly used as sedative and hypnotic drugs in China, Korea, Myanmar, Vietnam, and other Asian countries. However, no scientific proof on hypnotic activity of Z. mauritiana seeds (ZMS) was reported. In this study, the hypnotic activity of 50% ethanolic extract from ZMS was observed on the loss of righting reflex in mice using pentobarbital-induced sleep mice method. The contents of total phenolics and total flavonoids in the extract were also determined. The results showed that the 50% ethanolic extract from ZMS contained total phenolics  mg gallic acid equivalent (GAE)/g extract and total flavonoids  mg quercetin equivalent (QE)/g extract. Oral administration of the extract at the dose of 200 mg/kg significantly increased the sleeping time in mice intraperitoneally administered with sodium pentobarbital (50 mg/kg body weight). These results supported the traditional use of ZMS for the treatment of insomnia. The seeds of Z. mauritiana should be further developed as an alternative sedative and/or hypnotic product

    Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes

    Get PDF
    Abstract The present study was aimed to investigate the activity of Thai medicinal plants on inflammation caused by Propionibacterium acnes in terms of free radical scavenging and cytokine reducing properties. P. acnes have been recognized as pus-forming bacteria triggering an inflammation in acne. Antioxidant activity was determined by DPPH scavenging and NBT reduction assay. The result showed that Garcinia mangostana possessed the most significant antioxidant activity and reduced reactive oxygen species production. Houttuynia cordata, Eupatorium odoratum, and Senna alata had a moderate antioxidant effect. In addition, Garcinia mangostana extracts could reduce the TNF-Îą production as determined by ELISA. Garcinia mangostana was highly effective in scavenging free radicals and was able to suppress the production of pro-inflammatory cytokines. This study has identified the promising source of anti-inflammatory agent which could be useful in treatment of acne vulgaris

    Extraction method for high free radical scavenging activity of Siamese neem tree flowers

    No full text
    Siamese neem tree (Azadirachta indica A. Juss. var. siamensis Valeton) is a medicinal plant found in Thailand. Youngleaves and young flowers of this plant are commonly consumed as a bitter tonic vegetable. The flowers are also used fortreatment of fever. The flower extract has been reported to exhibit in vitro free radical scavenging activity and can inhibitlipid peroxidation of bronchogenic cancer cell line. Active compounds in the flowers are flavonoids such as rutin andquercetin. The content of these compounds in the crude extract depends on the method of extraction. Therefore, the appropriateextraction method promoting high yield of total flavonoids and high free radical scavenging activity was investigated inthis study. Six different extraction methods, i.e. maceration, percolation, decoction, soxhlet extraction, ultrasonic extraction(UE), and microwave assisted extraction (MA) were carried out for extracting dried powder of Siamese neem tree young flowers. The solvent used for maceration, percolation, and soxhlet extraction was 50% ethanol, while distilled water was used for decoction and MA, and both solvents were used for UE. The content of crude extract, free radical scavenging activity, and total flavonoids content of each extract were investigated and compared. Comparing the various extraction methods, decoction provided an extract containing a high amount of total flavonoids (17.54 mgRE/g extract) and promoting the highest scavenging activity at EC50 11.36 g/ml. Decoction is also simple, cheap, and convenient and could be used in developing countries. Thus, it should be the recommended extraction method for the flowers of Siamese neem tree for furtherdevelopment of antioxidant pharmaceutical preparations

    Simultaneous Determination of Crypto-Chlorogenic Acid, Isoquercetin, and Astragalin Contents in Moringa oleifera Leaf Extracts by TLC-Densitometric Method

    Get PDF
    Moringa oleifera Lamarck (Moringaceae) is used as a multipurpose medicinal plant for the treatment of various diseases. Isoquercetin, astragalin, and crypto-chlorogenic acid have been previously found to be major active components in the leaves of this plant. In this study, a thin-layer-chromatography (TLC-)densitometric method was developed and validated for simultaneous quantification of these major components in the 70% ethanolic extracts of M. oleifera leaves collected from 12 locations. The average amounts of crypto-chlorogenic acid, isoquercetin, and astragalin were found to be 0.0473, 0.0427, and 0.0534% dry weight, respectively. The method was validated for linearity, precision, accuracy, limit of detection, limit of quantitation, and robustness. The linearity was obtained in the range of 100–500 ng/spot with a correlation coefficient (r) over 0.9961. Intraday and interday precisions demonstrated relative standard deviations of less than 5%. The accuracy of the method was confirmed by determining the recovery. The average recoveries of each component from the extracts were in the range of 98.28 to 99.65%. Additionally, the leaves from Chiang Mai province contained the highest amounts of all active components. The proposed TLC-densitometric method was simple, accurate, precise, and cost-effective for routine quality controlling of M. oleifera leaf extracts

    Alkaloid metabolism in callus and regenerating shoot cultures of a Duboisia hybrid

    No full text
    Undifferentiated callus and regenerating shoot callus on Murashige and Skoog (MS) medium was unable to metabolize scopolamine to hyoscyamine. Shoots on MS medium supplemented with hyoscyamine on extraction afforded unchanged hyoscyamine (44%). However, 16% was converted to 6-hydroxyhyoscyamine and 12% to scopolamine. Metabolism appeared unaffected by the number of shoots formed. Callus only gave very low yields of these two metabolities. Control callus and shoots on MS medium without alkaloid contained traces of valtropine and/or butropine. However, both callus and shoots on MS medium supplemented with either scopolamine or hyoscyamine showed enhanced levels of these minor alkaloids at times by a factor exceeding 500
    corecore